
z/OS

MVS Planning: Operations

SA22-7601-02

IBM

z/OS

MVS Planning: Operations

SA22-7601-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 193.

Third Edition, March 2002

This is a major revision of SA22-7601-01.

This edition applies to Version 1 Release 3 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About This Book . xi
Who Should Use This Book . xi
How To Use This Book . xi
Where to Find More Information. xii

Using LookAt to look up message explanations xii
Accessing licensed books on the Web xiii

Do You Have Problems, Comments, or Suggestions? xiii

Summary of changes . xv

Chapter 1. Planning Your MVS Operations 1
Operations Goals . 1
The Operating Environment. 2

Multiple Console Support and the MVS Environment 2
Sysplex Operating Environment 5
Using MCS and SMCS Consoles in a System or Sysplex. 5
Extended MCS Consoles . 6
SDSF and MVS Operations Planning. 10
RMF and MVS Operations Planning 10
Automated Operations and z/OS Operations Planning 11
Remote Operations and MVS Operations Planning. 11
ESCON and Operations Planning 12

Chapter 2. Defining Your Console Configuration 13
Choosing How to Define Your Console Configuration 13

Shared Consoles in Mixed Sysplexes 14
Using CONSOLxx . 14

CONSOLE Statement . 15
INIT, DEFAULT, and HARDCOPY Statements 16
CONSOLxx and the Sysplex 20

SMCS Console Considerations 26
Installing SMCS . 26

Removing Console Definitions from a Configuration 36
Sample Invocation of IEARELCN 36
Environment . 37

Defining Devices as MCS or SMCS Consoles 38
Devices MVS Can Use as MCS Consoles 39
Using Console Names . 40

Attaching Consoles to Particular Systems in a Sysplex 42
Planning Console Recovery . 43

Recovery Considerations . 43
Parmlib Members and Console Recovery 44
Alternate Console Groups and Console Backup 44
Using CNGRPxx to Define Alternate Console Groups. 44
Activating CNGRPxx . 45
Alternate Console Groups and CONSOLxx 46
Changing the Specification of Alternate Console Groups. 46
Changing Console Alternates without Re-IPLing. 46
Alternate Console Groups and Extended MCS Consoles 46

© Copyright IBM Corp. 1988, 2002 iii

Using the ALTERNATE Keyword on the CONSOLE Statement 47
Alternate Console of Last Resort 47
Console Switching and Console Recovery 48
The SWITCH CN Command 48
Console Recovery and the RESET CN Command 49
Role of the Master Console During Console Recovery 49
No-Master-Console Condition 49
No-Consoles Condition . 50
Selecting a Master Console Using Alternate Console Groups 50
Display of Synchronous Messages 51

Planning Console Security. 52
Controlling Command Authority with the AUTH Attribute 52
Assigning a Console Master Authority 53
Using RACF to Control Command Authority and Operator Logon 54
Defining RACF Profiles . 55
MVS Commands, RACF Access Authorities, and Resource Names. 62
Other Ways to Control Command Authority for Consoles 68

Planning Console Functions for Operators 68
How to Control the Use of an MCS Console 69
Defining the USE Attribute. 71
Message Display and the Full-Capability Console Screen 72
Specifying Automatic Message Deletion for MCS or SMCS Consoles 72
Temporarily Suspending the Screen Roll 76
Comparison of Roll, Roll-Deletable, Wrap Modes, and HOLDMODE 77
Manual Deletion of Messages 77
How Operators Specify Message Numbering 78
Using SEG to Delete Groups of Messages from the Screen 79
Status Displays and MCS and SMCS Consoles 79
Setting Up Out-of-Line Display Areas on a Console 80
Where to Route Status Displays 81
Defining the Time Interval for Updating a Dynamic Status Display 82
Controlling the Format of Messages and Status Information on Console

Screens . 82
Displaying Jobname, Data Set Status, and TSO/E Information 84
Adding Information to Mount Messages 85

Defining PFKs and Other Command Controls for Consoles 85
Setting up PFKs for Consoles 85
Defining the Command Delimiter for Full-Capability Consoles 88

Hardcopy Processing . 88
The Hardcopy Message Set 89
The Hardcopy Medium . 90

Chapter 3. Managing Messages and Commands 95
General Characteristics of Messages and Commands 95
Message and Command Routing 96

Message Flow in a System 97
Command Flow in a System 97
Command Flooding . 98

Message and Command Flow in a Sysplex 98
Messages in a Sysplex . 98
Message Recovery Following System Failures 99

Routing Messages . 104
Defining Routing Codes . 105
Handling Messages without Routing Codes 105
Defining Message Levels for a Console 106
Defining the UD Attribute for Consoles 107

iv z/OS V1R3.0 MVS Planning: Operations

Directing Messages from Other Systems to a Console in a Sysplex 108
Replying to Messages from Other Systems in a Sysplex 108
Directing Messages that Are Eligible for Automation to Extended MCS

Consoles . 108
Routing Commands. 109

Using CMDSYS on the CONSOLE Statement 109
Using the ROUTE command 109
Using the Command Prefix Facility 110
Using the L=Operand on Certain Commands 111
Sharing System Commands By Using System Symbols 111
MPF and MVS Operations Planning. 114
Specifying Message Presentation. 115
Suppressing Messages . 115
Retaining Messages . 116
Selecting Messages for Automation 119
Automation in a Sysplex . 120
Installation Exits for Messages and Commands 121
Controlling WTO and WTOR Message Buffers 123
Controlling Reply IDs for WTOR Messages 123
Controlling Automatic Ending of Multi-line WTO Messages 124
Aggregating Messages Returned to the ROUTE Command 125
Controlling Write-to-Log (WTL) Message Buffers 128
Handling Translated Messages 128
Summary of MVS Message and Command Processing Services 134

Chapter 4. Planning for Basic Operation Procedures 135
Initializing the System . 136

The System Console and Message Processing 136
Using the System Console 137
Specifying LOAD Information 137
The NIP Console . 137
The System Console and CONSOLxx 138
Problem Determination and the System Console 139
Specifying the Time-of-Day Clock and the JES Subsystem 142
CLOCKxx and the Sysplex 142
Handling Wait States . 143
Initializing the Master Console 143

Interacting with System Functions 143
Device Allocation. 143
Hot I/O Detection . 145
Device Boxing. 146
Considerations for Operators 146

Controlling Shared DASD . 146
Specifying Shared DASD Mount Characteristics 147

Chapter 5. Examples and MVS Planning Aids for Operations 149
Summary of CONSOLxx and Commands to Change Values 149
Controlling Extended MCS Consoles Using RACF 152

Defining the User Profile of an Extended MCS Console 153
Granting the User Access to the RACF OPERCMDS class 153
Allowing a TSO/E User to Issue the CONSOLE Command 154
Changing Console Attributes Using RACF 154

Using RACF to Control APF Lists 154
Command Authorization . 155
Defining Command Profiles 155
Controlling How to Add or Delete APF List Entries for a Library 156

Contents v

Controlling How to Change the APF List Format 157
Using RACF to Control Dynamic Exits 158

Command Authorization . 158
Defining Command Profiles 158
Controlling Defining a Dynamic Exit 159
Controlling Adding, Modifying or Deleting Exit Routines 160
Controlling How to Undefine a Dynamic Exit 161
Controlling How to Obtain a List of the Dynamic Exits 161
Controlling Calling of a Dynamic Exit’s Routines 162
Controlling Recovering of Dynamic Exit Processing 163

Using RACF to Control LNKLST Concatenations 164
Command Authorization . 164
Defining Command Profiles 164
Controlling Defining a LNKLST Set 165
Controlling Adding a Data Set to a LNKLST Set 166
Controlling Deleting a Data Set from a LNKLST Set 166
Controlling Removing the Definition of a LNKLST Set 167
Controlling Testing of a LNKLST Set 168
Controlling Updating of a Job’s LNKLST Set 169
Controlling Activation of a LNKLST Set 169

Using RACF to Control Dynamic LPA 170
Command Authorization . 170
Defining Command Profiles 171
Controlling Adding A Module to LPA after IPL 171
Controlling Deleting A Module from LPA after IPL 172

Managing Messages with a Console Cluster 173
Setting Up and Using a Master Console Cluster 173
Setting Up Console Recovery for the Consoles 175
Defining Routing Codes for the Consoles. 175
Defining the Operating Modes and the Message Levels for the Consoles 176
Setting Up Display Areas. 176
Setting Up a TRACK Display 177
Setting Message Roll Rates and Message Deletion Specifications for the

Consoles . 179
Setting Up a Periodic Display of Outstanding Requests 180
Summary of Contents of CONSOLxx for the Cluster. 180
Defining PFKs for the Master Console 181
Summary of the PFK Definitions for the Cluster 184
Activating the PFK Table . 184
Using the Master Console Cluster and Setting It Up Again 185
The 3290 as a Console Cluster 185

Defining a Console Configuration for a Sysplex Environment 185
Planning Your Console Configuration for Each System 186
Defining CONSOLxx for Each System 187

Appendix. Accessibility . 191
Using assistive technologies 191
Keyboard navigation of the user interface. 191

Notices . 193
Programming Interface Information 194
Trademarks. 194

Glossary . 197

Index . 203

vi z/OS V1R3.0 MVS Planning: Operations

Figures

1. Console Configuration for an MVS System . 4
2. Sysplex Showing Console attachments . 5
3. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles 22
4. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles 24
5. Console Configuration in a Sysplex with Four MCS Consoles Attached to One System 25
6. Sample LOGON Mode Table Entry . 28
7. SMCS Console Selection Screen . 35
8. Screen Formats of a Full-Capability, Status Display, and Message Stream Console 71
9. Example of a Full Wrap Mode Screen . 75

10. Example of the Wrap Mode Screen after the Next Wrap 75
11. Sample Screen Showing Two Out-of-Line Display Areas on a Full-Capability Console 81
12. PFKTAB01 Parmlib Member. 88
13. Sample JCL for Creating a Run-Time Message File 130
14. Display Areas on Consoles in the Console Cluster 177
15. Single 3290 Screen As a Console Cluster . 185
16. Console Configuration for a Two-System Sysplex 186

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R3.0 MVS Planning: Operations

Tables

1. Console Attributes for MCS and Extended MCS Consoles 7
2. Summary of CONSOLE statement functions . 15
3. Summary of INIT statement functions . 17
4. Summary of DEFAULT statement functions . 19
5. Summary of HARDCOPY statement functions . 19
6. Scope of CONSOLxx Keywords . 21
7. Keyword Definitions . 28
8. PSERVIC Values for SNA Devices . 28
9. Console Switching Using the ALTERNATE or ALTGRP keyword 47

10. MVS Commands, RACF Access Authorities, and Resource Names 62
11. Comparison of Roll, Roll-deletable, and Wrap Mode 77
12. IBM Defaults for PFKs . 86
13. Automatic restart of log with JES2 . 93
14. Summary of Message and Command Processing that MVS Provides 134
15. CONSOLE Statement Summary. 149
16. Summary of INIT, HARDCOPY, and DEFAULT Statements 151

© Copyright IBM Corp. 1988, 2002 ix

x z/OS V1R3.0 MVS Planning: Operations

About This Book

This book contains planning information for MVS operations. It describes how to
define and use multiple console support (MCS) consoles, SNA Mutiple console
support (SMCS) consoles (as of z/OS V1R1), and extended MCS consoles. It also
describes how to manage messages and commands in an MVS single-system or
sysplex environment.

Who Should Use This Book
System programmers who plan MVS operations and persons who administer the
security procedures for their installations should use this book. The book assumes
that the user understands the installation’s hardware and software, and also
understands the general organization and functions of MVS.

Users should have a good understanding of Parmlib and how to use it.

How To Use This Book
Read the chapters in this book in sequence to obtain a good understanding of MVS
operations planning.

The book is organized as follows:

v Chapter 1, “Planning Your MVS Operations” on page 1 describes setting
operations goals for an MVS environment. It provides a brief introduction to
multiple console support (MCS) consoles, SMCS consoles, and extended MCS
consoles.

v Chapter 2, “Defining Your Console Configuration” on page 13 describes how to
define an MCS and SMCS console configuration. It describes how to define a
device as a console and how to define console functions in CONSOLxx of
Parmlib. It also provides information to plan for console recovery, console
security, and system logging.

v Chapter 3, “Managing Messages and Commands” on page 95 describes how to
manage messages and commands for consoles in an MVS environment. It
includes information about the message processing facility (MPF), the action
message retention facility (AMRF), installation exits to modify messages and
commands, and message translation using the MVS message service (MMS).

v Chapter 4, “Planning for Basic Operation Procedures” on page 135 describes
how to plan for basic MVS operator tasks like initializing a system and operating
MVS on a day-to-day basis.

v Chapter 5, “Examples and MVS Planning Aids for Operations” on page 149
provides examples of defining a console cluster to handle message traffic in an
MVS system and defining a console configuration in a two-system sysplex. It also
contains reference information to help you in your planning.

In the back of this book, a glossary defines technical terms used in this book.

© Copyright IBM Corp. 1988, 2002 xi

Where to Find More Information
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of z/OS, see z/OS Information Roadmap.

The table below lists titles and order numbers for books related to other products.

Short Title Used in This Book Title Order Number

NetView Automation: Planning NetView Automation: Planning SC31–6141

OPC/ESA General Information IBM SAA Operations Planning and Control/ESA General
Information

GH19-6715

System Automation for OS/390
General Information

System Automation for OS/390 General Information GC28-1541

System Automation for OS/390
Planning and Installation

System Automation for OS/390 Planning and Installation GC28-1549

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages, system abends, and some codes. Using LookAt to find information is
faster than a conventional search because in most cases LookAt goes directly to
the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from anywhere in z/OS where you can access a TSO command line (for
example, TSO prompt, ISPF, z/OS UNIX System Services running OMVS).

To find a message explanation on the Internet, go to the LookAt Web site and
simply enter the message identifier (for example, IAT1836 or IAT*). You can select a
specific release to narrow your search. You can also download code from the z/OS
Collection, SK3T-4269 and the LookAt Web site so you can access LookAt from a
PalmPilot (Palm VIIx suggested).

To use LookAt as a TSO command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO from a disk on your z/OS
Collection, SK3T-4269 or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Click the News button.

3. Scroll to Download LookAt Code for TSO and VM.

4. Click the ftp link, which will take you to a list of operating systems. Select the
appropriate operating system. Then select the appropriate release.

5. Find the lookat.me file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id. LookAt will display the message explanation for the message
requested.

xii z/OS V1R3.0 MVS Planning: Operations

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Do You Have Problems, Comments, or Suggestions?
Your suggestions and ideas can contribute to the quality and the usability of this
book. If you have problems using the book, or if you have suggestions for improving
it, complete and mail the Reader’s Comment Form found at the back of the book.

About This Book xiii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xiv z/OS V1R3.0 MVS Planning: Operations

Summary of changes

Summary of changes
for SA22-7601-02
z/OS Version 1 Release 3

The book contains information previously presented in z/OS MVS Planning:
Operations, SA22-7601-01, which supports z/OS Version 1 Release 2.

New information

v An appendix with z/OS product accessibility information has been added.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1 R2, you may notice changes in the style and structure of
some content in this book—for example, headings that use uppercase for the first
letter of initial words only, and procedures that have a different look and format. The
changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7601-01
z/OS Version 1 Release 2

The book contains information previously presented in z/OS MVS Planning:
Operations, SA22-7601-00, which supports z/OS Version 1 Release 1.

New information

v A new parameter, UNCOND, has been added to the VARY
devnum,HARDCPY,OFF to temporarily turn off hardcopy.

This book contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of changes
for SA22-7601-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 MVS Planning:
Operations.

Technical changes include:

v Information is added to describe SMCS consoles.

© Copyright IBM Corp. 1988, 2002 xv

xvi z/OS V1R3.0 MVS Planning: Operations

Chapter 1. Planning Your MVS Operations

Managing the operation of z/OS in today’s data processing environment has
become increasingly important. Operators need to learn new skills and manage
more z/OS functions as installations grow in their computing power. Single MVS
systems are becoming part of multisystem environments with new demands on the
management of the hardware, software, and people required to run those systems.
To monitor MVS and to respond to system changes and problems make operations
planning more important than ever before.

In order to make decisions about MVS operations planning, you need to
understand:
v The operations goals of your installation
v The operating environment and how it will affect those goals.

Operations Goals
MVS operations planning involves issues like workload management, system
performance, I/O device management, console security, and console operations, to
name a few. But it also involves the business goals and policies established by the
installation to allow the installation to grow and handle work efficiently. These
needs, of course, vary from installation to installation, but they are important when
you plan your MVS operations.

Managing the complexity of MVS requires you to think about the particular needs of
the installation. However, any installation might consider the following goals when
planning its MVS operations:

v Increasing system availability . Many installations need to ensure that their
system and its services are available and operating to meet service level
agreements. Installations with 24-hour, 7-day operations need to plan for minimal
disruption of their operation activities. In terms of MVS operations, how the
installation establishes console recovery or whether an operator must re-IPL a
system to change processing options are important planning considerations.

v Controlling operating activities and functions . As more installations make use
of multisystem environments, the need to coordinate the operating activities of
those systems becomes crucial. Even for single MVS systems, an installation
needs to think about controlling communication between functional areas (like a
tape-pool library and the master console area, for example). In both single and
multisystem environments, the commands operators can issue from consoles can
be a security concern that requires careful coordination. As planner, you want to
make sure that the right people are doing the right tasks when they interact with
MVS. If your installation uses remote operations to control target systems, you
also need to decide about controlling those activities from the host system.

v Simplifying operator tasks . Because the complexity of operating MVS has
increased, an installation needs to think about the tasks and skills of its
operators. How operators respond to messages at their consoles and how you
can reduce or simplify their actions are important to operations planning. Also,
your installation needs to plan MVS operator tasks in relation to any automated
operations that help simplify those tasks.

v Streamlining message flow and command processing . In thinking about
operator tasks, an installation needs to consider how to manage messages and
commands. Operators need to respond to messages. Routing messages to
operator consoles, suppressing messages to help your operators manage

© Copyright IBM Corp. 1988, 2002 1

increased message traffic, or selecting messages for automated operations can
all help you manage system activity efficiently.

v Single system image . Single system image allows the operator, for certain
tasks, to interact with several images of a product as though they were one
image. For example, the operator can issue a single command to all MVS
systems in the sysplex instead of repeating the command for each system.

v Single point of control . Single point of control allows the operator to interact
with a suite of products from a single workstation. An operator can accomplish a
set of tasks from a single workstation, thereby reducing the number of consoles
the operator has to manage.

The Operating Environment
The operation of an MVS system involves the following:

v Console operations or how operators interact with MVS to monitor or control the
hardware and software.

v Message and command processing that forms the basis of operator interaction
with MVS and the basis of MVS automation.

Operating MVS involves managing hardware like processors and peripheral devices
(including the consoles where your operators do their work) and software such as
the MVS operating control system, the job entry subsystem, subsystems like
NetView that can control automated operations, and all the applications that run on
MVS.

Planning MVS operations for a system must take into account how operators use
consoles to do their work and how you want to manage messages and commands.
Because messages are also the basis of automated operations, understanding
message processing in an MVS system can help you plan MVS automation.

The MVS environment at an installation can affect how you plan to meet your
operations goals. Your MVS operating environment might be a single MVS system
or a multisystem environment. Depending on the environment, operating MVS can
involve different approaches to your planning tasks. For example, planning console
security for a multisystem environment requires more coordination than for a single
MVS system. But much of the planning you do for a single system can serve as the
basis for planning MVS operations in a multisystem environment.

Single MVS systems can be part of multisystem environments like a sysplex or a
JES3 complex. In a sysplex, MVS systems can share work and resources;
messages and commands can flow from system to system so that communication
among systems is also shared.

Multiple Console Support and the MVS Environment
Generally, operators on an MVS system receive messages and enter commands on
MCS and SMCS consoles. (Operators can use other consoles such as NetView
consoles, to interact with MVS, but this book primarily describes MCS and SMCS
consoles and how to plan for their use. Installations can enhance their MVS
operations by using extended MCS consoles. See “Extended MCS Consoles” on
page 6.)

2 z/OS V1R3.0 MVS Planning: Operations

MCS consoles are devices that are locally attached to an MVS system and provide
the basic communication between operators and MVS. (MCS consoles are attached
to control devices that do not support systems network architecture (SNA)
protocols.)

SMCS consoles are devices that do not have to be locally attached to an MVS
system and provide the basic communication between operators and MVS. SMCS
consoles use SecureWay Communications Server to provide communication
between operators and MVS instead of direct I/O to the console device. SMCS
consoles are available as of z/OS V1R1.

In general, there are small differences in the techniques you use to define and
activate MCS consoles and SMCS consoles. Once the consoles are activated,
however, MCS consoles and SMCS consoles are very much alike.

You can define MCS and SMCS consoles in a console configuration according to
different functions. For example, one console can function as a master console for
the system. Important messages that require action can be directed to the operator
who can act by entering commands on the console. Another console can act as a
monitor to display messages to an operator working in a functional area like a tape
pool library or to display messages about printers at your installation.

Defining a console configuration is an important part of your MVS operations
planning. You define a console configuration by defining the devices you want to
use as consoles and their console attributes, in the CONSOLxx Parmlib member. In
CONSOLxx, these console attributes control important console functions like the
types of commands operators can enter from the console, routing information for
messages and commands, and how to use the console. CONSOLxx and the MCS
and SMCS console attributes that you can control are described in “Summary of
CONSOLxx and Commands to Change Values” on page 149.

Reference
For information about the physical configuration of a master console, see z/OS
MVS Recovery and Reconfiguration Guide.

Figure 1 shows a console configuration for an MVS system that also includes the
system console, an SMCS console, NetView, and TSO/E.

Chapter 1. Planning Your MVS Operations 3

The system console is attached to the processor controller. An operator can use the
system console to initialize MVS and other system software and during recovery
situations when other consoles are unavailable.

In addition to MCS and SMCS consoles, the MVS system shown in Figure 1 has a
NetView console defined to it. NetView works with system messages and command
lists to help you automate MVS operator tasks. You can control many system
operations from a NetView console. For information about MVS operations and
NetView, see “Automated Operations and z/OS Operations Planning” on page 11.

Users can monitor many MVS system functions from TSO/E terminals. Using the
System Display and Search Facility (SDSF) and the Resource Measurement Facility
(RMF), TSO/E users can monitor MVS and respond to workload balancing and
performance problems. For information about MVS operations and SDSF, see
“SDSF and MVS Operations Planning” on page 10. For information about MVS
operations and RMF, see “RMF and MVS Operations Planning” on page 10.

An authorized TSO/E user can also initiate an extended MCS console session to
interact with MVS. For information on extended MCS consoles, see “Extended MCS
Consoles” on page 6.

The MCS consoles in Figure 1 include the following:

v An MCS master console from which an operator can view messages and enter
all MVS commands. This console is in full-capability mode because it can receive
messages and accept commands. An operator can control the operations for the
MVS system from an MCS or SMCS master console.

v An MCS status display console. An operator can view system status information
from DEVSERV, DISPLAY, TRACK, or CONFIG commands. However, because

TSO/E

N
E
T
V
I
E
W

MVS

System
console
(attached
to the
processor
controller)

MCS Master
console

MCS status
display
console

MCS message
stream
console

NetView
console

Extended MCS
console with
master authority

TSO/E session
with SDSF

TSO/E session
with RMF

SMCS
console

VTAM
(SMCS)

Figure 1. Console Configuration for an MVS System

4 z/OS V1R3.0 MVS Planning: Operations

this is a status display console, an operator cannot enter commands from the
console. An operator on a full capability console can enter these commands and
route the output to a status display console for viewing. An SMCS console
cannot be a status display console.

v An MCS message-stream console. A message-stream console can display
system messages. An operator can view messages routed to this console.
However, because this is a message-stream console, an operator cannot enter
commands from the console. You can define routing codes and message level
information for the console so that the system can direct relevant messages to
the console screen for display. Thus, an operator who is responsible for a
functional area like a tape pool library, for example, can view MOUNT messages.
An SMCS console cannot be a message stream console.

Sysplex Operating Environment
In a sysplex, you can define an MCS and SMCS console configuration that allows
messages and commands to flow from system to system. Figure 2 shows a
two-system sysplex, with three consoles attached:

In Figure 2, two systems are part of a sysplex with cross-coupling services (XCF)
providing signalling paths that allow MCS or SMCS consoles on different systems to
communicate with each other. In a sysplex, you can define your MCS or SMCS
consoles so that any MCS or SMCS console can receive messages from any
system, and commands entered on any MCS or SMCS console can be processed
on any system. MCS and SMCS consoles are defined to MVS, and there is no
need to define them to JES2, or establish logical associations with other systems.

The sysplex has great flexibility in its console attachments. When you define your
MCS or SMCS consoles for a system and IPL the system into a sysplex, your
consoles can have a logical association to any system. Any MCS or SMCS console
on a system in a sysplex can be the focal point, or MCS and SMCS consoles can
share the control they have over systems.

Chapter 5 describes how you can define consoles for a two-system sysplex. For
information about defining and tuning the sysplex, see z/OS MVS Setting Up a
Sysplex.

Using MCS and SMCS Consoles in a System or Sysplex
You can define up to 99 consoles including any subsystem-allocatable consoles for
an MVS system. In a sysplex, the limit is 99 consoles for the sysplex. You can
exceed this number in a system or sysplex by using extended MCS consoles. (See
“Extended MCS Consoles” on page 6.) Therefore, you should examine any product
that uses subsystem-allocatable consoles to determine if it could use extended
MCS consoles instead.

MVS
System

A

MVS
System

B

MCS-2
SMCS

MCS-1

signalling
paths

Figure 2. Sysplex Showing Console attachments

Chapter 1. Planning Your MVS Operations 5

There is no requirement to have an MCS or SMCS console configured to each
system. You can use command and message routing capabilities on one MCS or
SMCS console to control multiple systems in the sysplex. MCS or SMCS consoles
are not needed on all systems, but you need one MCS or SMCS console to operate
the sysplex efficiently.

It is possible to control a sysplex through SMCS consoles alone. In a sysplex with
only SMCS consoles, the hardware management console takes on a more
important role; it is the console of last resort, for example.

Because SMCS consoles connect through a network, security plays a significant
role. For example, you need to require operators to log on, and you must take steps
to protect the network connections.

Extended MCS Consoles
To extend the number of consoles on MVS systems or to allow applications and
programs to access MVS messages and send commands, an installation can use
extended MCS consoles. The use of these consoles can help alleviate the
constraint of the 99 MCS console limit. Moving to an extended MCS console base
from a subsystem-allocatable console base will allow for easier expansion in a
sysplex.

You can define a TSO/E user to operate an extended MCS console from a TSO/E
terminal. The user issues the TSO/E CONSOLE command to activate the extended
MCS console.

An installation can also write an application program to act as an extended MCS
console. An authorized program issues the MVS authorized macro MCSOPER to
activate and control the extended MCS console and uses other MVS macros and
services to receive messages and send commands.

Using Extended MCS Consoles
Extended MCS consoles provide flexibility in the number of consoles you can use
with MVS. Defining extended MCS consoles as part of the MVS console
configuration allows you to extend the number of consoles beyond the MCS
console limit, which is 99 for an MVS system or sysplex.

Uses for extended MCS consoles include:

v Allow a user through TSO/E to act as an MVS operator and interact with MVS
from a TSO/E terminal.

v In an application program, define your own message presentation service, or
handle messages and commands that can help automate certain tasks.

For example, you might want to run a program that activates an extended MCS
console to control printer operations for a system or sysplex. Because you can
direct messages and commands from any system in a sysplex to a specific
extended MCS console, you can design programs to control certain automation
functions for the entire sysplex.

Both JES2 and JES3 installations can use extended MCS consoles.

Extended MCS Consoles and Console Attributes
An installation can assign to a TSO/E user or to an MVS application program that
acts as an extended MCS console many of the same console attributes as an MCS
console. These attributes control functions like the types of commands users can
issue from the console, console recovery, the routing of messages and commands,

6 z/OS V1R3.0 MVS Planning: Operations

and the format display of messages. “Defining Console Attributes for Extended MCS
Consoles” describes how you define these extended MCS console attributes.

Note: The TSO/E CONSOLE command provides only a line-mode interface.

Defining and Protecting Extended MCS Consoles
An installation can define and protect the use of extended MCS consoles through a
security product like RACF. To define a user to RACF and control the use of the
console, consider the following:

1. Arrange with the RACF security administrator to define a RACF profile for the
user of the extended MCS console.

For an interactive TSO/E user, the security or TSO/E administrator can use
RACF commands to permit the user to issue the TSO/E CONSOLE command.
To customize the use of the TSO/E CONSOLE command, the user can use the
TSO/E operator presentation sample defined as a series of Interactive System
Productivity Facility (ISPF) panels in SYS1.SAMPLIB. The SYS1.SAMPLIB
member name that contains documentation for the TSO/E operator presentation
sample is IEATOPSD.

For an MVS application program, the administrator can use RACF commands to
protect the use of the MCSOPER macro. In the RACF profile, the administrator
defines the name of the extended MCS console that the application must
specify on the MCSOPER macro.

2. Ensure that the TSO/E user or application that acts as an extended MCS
console has the proper console attributes.

In the RACF profile for the TSO/E user or for the MCSOPER name that the
application uses to activate the console, the RACF security administrator can
specify the console attributes. An application program can use MCSOPER
instead of RACF to specify these console attributes. If both RACF and
MCSOPER define console attributes for an extended MCS console, MCSOPER
values override the RACF values.

“Controlling Extended MCS Consoles Using RACF” on page 152 describes
examples of defining RACF user profiles for an extended MCS console.

Defining Console Attributes for Extended MCS Consoles
If your installation uses RACF to protect extended MCS consoles, RACF maintains
information about the console attributes in the OPERPARM segment of each RACF
user profile. You can define or alter these attributes using the RACF ADDUSER or
ALTUSER commands.

Table 1 shows the console attributes that your installation can control for users of
extended MCS consoles. It lists the console attribute, the subkeyword in
OPERPARM if you are using RACF, the default value if you do not specify RACF
OPERPARM and do not define values through MCSOPER, and the meaning of the
default. Notes follow the table:

Table 1. Console Attributes for MCS and Extended MCS Consoles

Console Attribute RACF
OPERPARM
Subkeyword

Default value Meaning of Default

Console group used in
recovery

ALTGRP None No default; specifies console group for
console switching. See “Console
Switching and Console Recovery” on
page 48.

Chapter 1. Planning Your MVS Operations 7

Table 1. Console Attributes for MCS and Extended MCS Consoles (continued)

Console Attribute RACF
OPERPARM
Subkeyword

Default value Meaning of Default

Command authority for
the console

AUTH AUTH(INFO) Only informational commands can be
issued.

Routing codes for the
console

ROUTCODE ROUTCODE(NONE) No routing codes established for the
console.

Levels of messages
directed to the console

LEVEL LEVEL(ALL) All levels of messages sent to the
console.

Message format for
console display

MFORM MFORM(M) Display only the message text.

System message
scope in the sysplex

MSCOPE MSCOPE(*ALL) Display messages from all systems in the
sysplex on the console.

Command association
in the sysplex

CMDSYS CMDSYS(*) Commands are processed on the local
system where the console is attached.

Jobname and TSO/E
display information

MONITOR None No default; monitors jobname and TSO/E
information for screen displays. See
“Displaying Jobname, Data Set Status,
and TSO/E Information” on page 84.

Logging of command
responses

LOGCMDRESP LOGCMDRESP(SYSTEM) SYSTEM indicates logging is controlled
by the value in HARDCOPY CMDLEVEL
in CONSOLxx. (NO indicates that the
system does not log command responses
if the response message was issued by
an authorized program).

1-byte migration id
assigned to the
console

MIGID
See Note 1

MIGID(NO) NO indicates that the console does not
require a migration ID. (YES indicates that
the system assign a 1-byte migration id to
the console.)

Storage limit for
message queuing

STORAGE STORAGE(1) Storage in megabytes that the system
uses for message queuing to the console.
The maximum is 2000 megabytes.

Whether the console
receives
delete-operator-
messages (DOMs)

DOM DOM(NORMAL) NORMAL indicates that the system direct
all appropriate DOMs to the console. (ALL
indicates that all systems in a sysplex
direct DOMs to the console. NONE
indicates that DOMs are not directed to
the console.)

Key name for the
console

KEY
See Note 2

KEY(NONE) 1- to 8-byte character name used in
DISPLAY CONSOLES,KEY. A key name
allows you to group extended MCS
consoles by function and refer to the
group using the key name in the DISPLAY
command.

Whether the console is
to receive action,
WTOR, and other
important informational
messages that the
system could not
display

UD UD(N) Do not display undelivered action and
WTOR messages on the console.

8 z/OS V1R3.0 MVS Planning: Operations

Table 1. Console Attributes for MCS and Extended MCS Consoles (continued)

Console Attribute RACF
OPERPARM
Subkeyword

Default value Meaning of Default

Whether the console is
to receive messages
eligible for automation

AUTO
See Note 3

AUTO(NO) NO indicates that the console does not
receive messages specified for
automation through MPF. (YES indicates
that the console can receive messages
eligible for automation.)

Notes:

1. Using the KEY name, operators can display information on the DISPLAY
CONSOLES,KEY command for all extended MCS consoles defined with the
same key.

2. Using the AUTO keyword, you can define an extended MCS console to receive
messages that MPF indicates as eligible for automation. These messages can
originate on any system in the sysplex. By specifying AUTO(YES) and
MSCOPE(*ALL) or the MCSOPER OPERPARM equivalents, an extended MCS
console can receive these messages from all systems in the sysplex.

3. Altering some console attributes might cause a message loss, UD loss, or
SYNCHDEST loss. If a loss occurs, MVS issues a DISPLAY
CONSOLE,HCONLY command and message IEE889I. You need to understand
that this can happen and can affect automation.

The potential for this situation to occur comes from using these commands:
VARY CN
VARY CONSOLE
CONTROL V,LEVEL
SWITCH CN
LOGOFF (for SMCS consoles)

MCSOPER and OPERPARM
You can use MCSOPER to specify OPERPARM values for the extended MCS
console. MCSOPER OPERPARM parameter list fields correspond to the RACF
OPERPARM subkeywords in Table 1 on page 7. These MCSOPER values override
RACF OPERPARM values for an extended MCS console.

For information on MCSOPER OPERPARM, see z/OS MVS Programming:
Authorized Assembler Services Guide.

References
For information about using the TSO/E CONSOLE command for TSO/E users
of extended MCS consoles, see z/OS TSO/E System Programming Command
Reference.

For information on writing MVS application programs that use extended MCS
consoles, see z/OS MVS Programming: Authorized Assembler Services Guide
and z/OS MVS Programming: Authorized Assembler Services Reference
LLA-SDU. For REXX language programs, see z/OS TSO/E REXX User’s
Guide and z/OS TSO/E REXX Reference.

Chapter 1. Planning Your MVS Operations 9

SDSF and MVS Operations Planning
SDSF is a program that runs on TSO/E and uses Interactive System Productivity
Facility (ISPF) panels. With SDSF, you can:

v Display immediate, up-to-date information about the jobs submitted to JES2 for
processing, including:

– Jobs on the JES2 input, output, and held queues

– Job status of a specific job, including the job’s priority and input class, the
time and date the job was entered in the system, and the time and date the
system began processing the job

– System information about active jobs

– Spool data sets for a specific job

– Output from a job

v Monitor and control jobs, output, and resources in a JES2 system without using
JES2 command syntax. With the MAS panel, you can display and control
members in a JES2 multi-access spool.

v Enter MVS and JES2 system commands from any TSO/E terminal.

v View the system log (SYSLOG), operations log (OPERLOG), or user log (ULOG)
online and search for specific information, which can reduce problem
management time and eliminate the need for a printed copy of the log.

v View input data sets of jobs that are being processed or waiting to be processed.

v View output data sets online and purge them, which can reduce the system print
load.

v Control remote printers and schedule output to be printed at remote printers.

v Get online information: help for panels, commands, and messages; an interactive
tutorial for ISPF users; and online documentation through BookManager.

RMF and MVS Operations Planning
Resource Measurement Facility provides data for performance measurements,
capacity planning, and trouble shooting. RMF can display information at the touch
of a button and provides functions to archive collected data for future reports and
analysis.

The functions RMF offers ensure the manageability of parallel microprocessor
systems. They assist in performance management without the need to logon to
every system where data is collected, and they support the new concept of
managing workloads by MVS through service level reporting.

With RMF, you can monitor the performance of the whole system complex from a
single point of control, thus increasing user productivity:
v Sysplex performance reports
v Selectable single-system reports in the sysplex
v Sysplex data server to access data across the sysplex

RMF provides performance data about business-oriented workloads and assists in
managing service levels efficiently. In addition, you get performance information for
CICS and IMS subsystems.

Coupling technology in the sysplex makes high-performance data sharing possible
and can increase the manageability of your whole environment. RMF provides the
data necessary for planning of the coupling facility configuration.

For information on RMF, see z/OS RMF User’s Guide.

10 z/OS V1R3.0 MVS Planning: Operations

Automated Operations and z/OS Operations Planning
As part of planning z/OS operations, consider using automated operations at your
installation. Automated operations help simplify operator tasks.

NetView
NetView selects messages that you can specify through the MVS message
processing facility (MPF) and uses its own message automation functions to help
automate operations tasks. Using MPF, you can suppress large numbers of
messages that operators do not need to see or select messages that NetView can
use to automate MVS tasks. (For information about using MPF to process
messages, see “MPF and MVS Operations Planning” on page 114.)

The NetView console, which is attached to NetView on an MVS system, allows
operators to perform many tasks that they ordinarily perform on MCS or SMCS
consoles. On the NetView console, you can display MVS messages, highlight and
hold important messages as on an MCS or SMCS console, and enter MVS
commands. The NetView console also allows operators to define NetView
command lists. These command lists can respond to messages selected through
MPF on MVS and perform a series of command operations that simplify operator
console actions. You can also route messages to a NetView console. You can
select certain messages to be directed to a specific console for operator action.

NetView consoles allow your operators to enter MVS commands to do work on
behalf of MVS. Your operators can also use MCS or SMCS consoles to enter
NetView commands. Thus, operators can invoke NetView command lists from MCS
or SMCS consoles to accomplish NetView tasks.

NetView Automation: Planning can help you coordinate activities for your MCS or
SMCS consoles, NetView, and MPF.

Automated Operations Control/MVS
System Automation for OS/390 is a NetView application that automates console
operations in a z/OS or OS/390 environment. System Automation for OS/390 uses
the message handling capabilities of MVS and NetView to initiate automation
procedures. These automation procedures perform operator functions that manage
MVS, JES2 or JES3, and program products like VTAM, RMF, and TSO/E.

System Automation for OS/390 General Information can help you plan console
automation using NetView.

Operations Planning and Control/ESA
NetView and System Automation for OS/390 can help you plan automated
operations for z/OS or OS/390 systems and networks and can simplify the tasks
operators need to perform. Automating production workload processing, including
batch processing, can also simplify operations and improve the workload
management at your installation. IBM’s program product IBM SAA Operations
Planning and Control/ESA (OPC/ESA) can help you plan your MVS production
workload. It plans and schedules workload processing and monitors and controls
the flow of work through your MVS environment.

OPC/ESA General Information can help you plan the automation of your production
workload processing using OPC/ESA.

Remote Operations and MVS Operations Planning
If your installation is managing target systems from host systems, you need to
consider how these remote operations tasks can affect your operations planning.

Chapter 1. Planning Your MVS Operations 11

The Target System Control Facility (TSCF) is now part of System Automation for
OS/390 and uses NetView to allow a host z/OS or OS/390 system to automate
operations at target systems. Using System Automation for OS/390, you can
automate console functions remotely, like IPLing or power-on restarting a processor.
You can initialize or monitor target systems, or use a passthrough facility to enter
processor commands for target systems, and let NetView operators manage several
target systems simultaneously from a host system.

In multisystem environments where remote operations is a goal, System Automation
for OS/390 and NetView provide a good way to manage operations. System
Automation for OS/390 describes the planning tasks for managing remote
operations of systems using System Automation for OS/390 and NetView.

ESCON and Operations Planning
ESCON Manager (Enterprise Systems Connection Manager) is now part of System
Automation for OS/390 and permits implementation of configuration changes among
channels, ESCON Directors, control units, and devices. System Automation for
OS/390 can be used to control and display the entire I/O configuration, whether it
be ESCON or non-ESCON or switched (via ESCON Directors) or non-switched.
System Automation for OS/390 ensures that a change to the I/O configuration will
not unexpectedly cause system or application outages due to the loss of a
connection path that is in use.

System Automation for OS/390 runs in z/OS or OS/390 environments providing:

v A single, logical point of control of I/O for multiple systems

v A unified multisystem view of I/O configuration and resource information

v Ability to vary online and vary offline devices attached to ESCON or parallel
channels

v Support for coupling facilities

These enhancements significantly increase the effectiveness of managing and
controlling I/O resources resulting in improved availability of computing resources
and increased efficiency in doing problem determination.

Reference
For more information see System Automation for OS/390 General Information.

12 z/OS V1R3.0 MVS Planning: Operations

Chapter 2. Defining Your Console Configuration

An MVS console configuration consists of the various consoles that operators use
to communicate with MVS. Your installation first defines the I/O devices it can use
as MCS consoles with the hardware configuration definition (HCD). HCD manages
the I/O configuration for the MVS system. You do not use HCD to define an SMCS
console. To indicate to MVS which devices to use as MCS consoles, you specify
the appropriate devices in the CONSOLxx parmlib member.

Choosing How to Define Your Console Configuration
CONSOLxx lets you define MCS consoles, SMCS consoles, or
subsystem-allocatable consoles.

Subsystem-allocatable consoles are defined to a subsystem such as NetView,
which manages the console for the system. For an MCS or SMCS console,
CONSOLxx allows you to define various console attributes that control how
operators can use the console and also control message routing and command
processing for the console. For subsystem-allocatable consoles, you control console
functions through the subsystem. It is beneficial to use an extended MCS console
interface (when available) instead of a subsystem-allocatable console interface to
relieve the 99 console constraint.

How you define your console configuration depends on the MVS system
environment at your installation. For a single MVS system, you might want to
consolidate console functions using NetView. A single NetView console instead of
several MCS consoles can serve as the focal point for MVS operator actions and
for NetView automation tasks. An operator can handle many operational needs of
the system from this one NetView console. For information on using NetView
consoles, see NetView Automation: Planning.

For an MVS system that manages many system resources or subsystems, you
might want to use several MCS consoles, each assigned with different functions.
For example, defining a console cluster for a system can help your installation
divide its console functions more efficiently. A console cluster is a group of several
MCS or SMCS consoles located together that you can use in place of a single
console to divide up the functions and message traffic of the single console.
“Managing Messages with a Console Cluster” on page 173 shows how to set up a
console cluster for an MVS system.

If your MVS system requires increased security, your installation can use RACF to
control console logon and the commands that an operator can enter from a specific
console. It is especially important to use RACF to control access to SMCS consoles
and the commands they can issue. Using RACF with MCS or SMCS consoles in an
MVS system or sysplex can ensure that operators enter only the commands they
are authorized to use.

In a sysplex, centralizing and coordinating console functions among different
systems is an important operations goal. Message traffic and command routing are
two considerations when you define consoles for a sysplex. In a sysplex, operators
can receive messages from different systems on a single console, or can enter
commands from a console to affect the processing of another system. How you
define console functions for each MVS system can affect the operations of the
sysplex as a whole. As a result, you need to understand the operations of the
sysplex and plan the console configuration for each MVS system accordingly.

© Copyright IBM Corp. 1988, 2002 13

This chapter describes how to set up an MCS and SMCS console configuration for
an MVS system using the CONSOLxx parmlib member. It describes how to define
devices as consoles to MVS and how to define console functions to plan for
console recovery and security. It also describes how to define console functions that
help operators manage messages on their console screens and enter commands
from their keyboards. Finally, it describes how you can define hardcopy processing
to handle your MVS system recording. Because consoles in a sysplex present
special cases, the chapter also includes planning considerations for defining and
using consoles in a sysplex environment.

Shared Consoles in Mixed Sysplexes
If your sysplex has systems of different levels, the systems can share consoles.

Using CONSOLxx

Reference
For complete information about CONSOLxx and any Parmlib member in this
book, see z/OS MVS Initialization and Tuning Reference. It provides reference
information, options, and values that you can specify for CONSOLxx and other
Parmlib members. When you define your console configuration for MVS, use
that book as reference to code your members.

To define your MCS and SMCS console configuration, you use the following
Parmlib members:

v CONSOLxx, which defines console characteristics for each MCS or SMCS
console.

v CNGRPxx, which defines alternate console groups to use for recovery. (For
information on CNGRPxx, see “Planning Console Recovery” on page 43.)

v PFKTABxx, which contains the program function key PFK tables for all MCS and
SMCS consoles. (For information on PFKTABxx, see “Defining PFKs and Other
Command Controls for Consoles” on page 85.)

v MPFLSTxx, which defines message processing to retain, suppress, or modify
messages and commands. (For information on MPFLSTxx, see “MPF and MVS
Operations Planning” on page 114.)

CONSOLxx lets you define certain devices as consoles and specify attributes that
determine how your operators can use MCS or SMCS consoles.

CONSOLxx contains four statements that define and control consoles for an MVS
system:
v CONSOLE
v INIT
v DEFAULT
v HARDCOPY

See “SMCS Console Considerations” on page 26 for specific information about
defining SMCS consoles.

14 z/OS V1R3.0 MVS Planning: Operations

CONSOLE Statement
You use the CONSOLE statement to define a device as a console. You define each
console device with one CONSOLE statement. CONSOLE also lets you specify
console attributes that control the following for an MCS or SMCS console:

v Console recovery by assigning an alternate console or a group of consoles to act
as alternates to the console specified on the statement. (You define groups of
alternate consoles in the CNGRPxx Parmlib member.)

v Console security by assigning command authority levels

v Certain console screen functions (console mode, methods for deleting messages
from the screen, ways to control display areas on the screen, and how to set up
the PFKs for the console)

v Message routing and message formatting

v Console operation in a sysplex

Table 2 summarizes the console functions that you control using the CONSOLE
statement. It includes the CONSOLE keyword and the MVS command to change
the keyword value. If an MVS command cannot be used, the table indicates that
you must re-IPL to change the value. The table also includes a page reference in
the book for a description of each keyword.

Table 2. Summary of CONSOLE statement functions

Task CONSOLE
statement
keyword

MVS command to change value See page

Defining a device as a console:

v Device number or system console
name (SYSCONS)

DEVNUM Must re-IPL 38

v Console name NAME Must re-IPL 38

v Kind of device UNIT Must re-IPL 38

v The VTAM logical unit (LU) name
(SMCS console only)

LU VARY CN,LU 31

Planning console recovery:

v Device number or name for a
single alternate or backup console

ALTGRP VARY CN,ALTGRP 43

v Name of the alternate console
group

ALTERNATE VARY devnum, CONSOLE,ALTCONS 43

Planning console security:

Command authority level for the
console

AUTH VARY CN,AUTH 52

Override LOGON value on default
statement

LOGON VARY CN,LOGON 54

Controlling the console screen function:

v Input/output capability or console
mode

USE CONTROL V,USE 71

v Message deletion mode of the
console

DEL CONTROL S,DEL 72

v Number of message lines that roll
on the console screen

RNUM CONTROL S,RNUM 73

Chapter 2. Defining Your Console Configuration 15

Table 2. Summary of CONSOLE statement functions (continued)

Task CONSOLE
statement
keyword

MVS command to change value See page

v Number of seconds between
message rolls or wraps

RTME CONTROL S,RTME 73

v Conversational/ nonconversational
message deletion

CON CONTROL S,CON 77

v Number of lines to be deleted from
the console screen using
CONTROL E,SEG

SEG CONTROL S,SEG 79

v Defining status display areas of
the console screen

AREA CONTROL A 80

v Time interval for updating dynamic
status display areas of the console
screen

UTME CONTROL T,UTME 82

v Routing instructions for status
displays

MSGRT MSGRT 81

v Monitoring selected events MONITOR MONITOR 84

v Defining a PFK table for the
console

PFKTAB CONTROL N,PFK 85

Controlling message routing and message formatting:

v Routing codes for the console ROUTCODE VARY CN,ROUT
VARY CN,AROUT
VARY CN,DROUT

105

v Message levels for the console LEVEL CONTROL V,LEVEL 106

v Routing of undelivered messages UD VARY CN,UD 82

v Message formats for console
display

MFORM CONTROL S,MFORM 107

Controlling console operation in a sysplex:

v System scope for messages that
the console receives

MSCOPE VARY CN,MSCOPE
VARY CN,AMSCOPE
VARY CN,DMSCOPE

108

v System association for commands
entered

CMDSYS CONTROL V,CMDSYS 109

v Specifying the system where you
want the console to be active

SYSTEM VARY CN,SYSTEM 42

INIT, DEFAULT, and HARDCOPY Statements
INIT, DEFAULT, and HARDCOPY statements define general characteristics for all
MCS and SMCS consoles in the system or sysplex.

The INIT statement

You use the INIT statement to control basic initialization values for all MCS or
SMCS consoles in the configuration. INIT lets you control the following:

16 z/OS V1R3.0 MVS Planning: Operations

v Console recovery (activating the CNGRPxx member that contains alternate
console group definitions and specifying a console group of master console
candidates)

v Certain console screen functions for all consoles (activating the PFKTABxx
member to control the PFK tables for MCS and SMCS consoles, displaying
certain information for mount messages, and specifying the command delimiter
for operator input of multiple commands)

v Message processing (such as activating MPF, AMRF, and the IEAVMXIT
message processing exit; and controlling WTO and WTOR messages, the
hardcopy message set, and MMS for message translation).

v The SMCS VTAM application for controlling SMCS consoles.

After IPL, operators can use the SET command to change some values defined on
the INIT statement. See Table 3, which summarizes console functions that you
control on the INIT statement:

Table 3. Summary of INIT statement functions

Task

Console function or attribute INIT statement
keyword

MVS command to change value See page

Planning console recovery:

v Activating the CNGRPxx
member that contains alternate
console group definitions

CNGRP SET CNGRP 44

v Specifying the name of an
alternate console group of
master console candidates

NOCCGRP Activate another CNGRPxx member
(SET CNGRP) that defines the same
alternate console group but with different
console members. See “Changing the
Specification of Alternate Console
Groups” on page 46.

49

Controlling the console screen function:

v Display of certain information for
mount messages

MONITOR MONITOR 85

v PFKTABxx member that contains
PFK tables for consoles

PFK SET PFK 85

v Defining the command delimiter
for multiple command input

CMDDELIM Must re-IPL 88

v Specifying the VTAM APPLID
that SMCS is to use on this
system

APPLID CONTROL M,APPLID 30

v Specifying the VTAM GENERIC
resource name that SMCS is to
use for the sysplex

GENERIC CONTROL M,GENERIC 30

Controlling message processing:

v Activating the message
processing facility (MPF)

MPF SET MPF 114

v Activating the action message
retention facility

AMRF CONTROL M,AMRF 116

Chapter 2. Defining Your Console Configuration 17

Table 3. Summary of INIT statement functions (continued)

Task

Console function or attribute INIT statement
keyword

MVS command to change value See page

v Activating the IEAVMXIT
message processing exit

UEXIT CONTROL M,UEXIT 121

v Maximum number of WTO
buffers

MLIM CONTROL M,MLIM 123

v Maximum number of WTOR
buffers

RLIM CONTROL M,RLIM 123

v Maximum number of write-to-log
(WTL) buffers

LOGLIM CONTROL M,LOGLIM 128

v Activating the MVS message
service (MMS) for message
translation

MMS SET MMS 128

v In a sysplex, controlling the
aggregation of messages
returned by the ROUTE *ALL or
ROUTE systemgroupname
command

ROUTTIME CONTROL M,ROUTTIME 125

Controlling component tracing options

Specifying the Parmlib member that
contains tracing options for the
operations services (OPS)
component

CTRACE TRACE CT OS/390
MVS
Initial-
ization
and
Tuning
Reference

The DEFAULT statement

You use the DEFAULT statement to control certain default values for MCS and
SMCS consoles in the configuration. DEFAULT lets you specify console attributes
that control the following for an MCS and SMCS console configuration:

v Console security by specifying operator logon options

v Certain console screen functions for all consoles (ability for operators to hold
messages on the screen)

v Routing for messages without routing codes or other message queuing
information, and routing for synchronous messages that bypass normal message
queuing

v Determining the maximum value for operator REPLY ids.

Unlike values in CONSOLE and INIT, operators cannot change individual DEFAULT
statement values. Operators must re-IPL the system, or, in some cases, the
sysplex, with the CONSOLxx member that contains the new DEFAULT statement.

Table 4 on page 19 summarizes console functions that you can control using the
DEFAULT statement:

18 z/OS V1R3.0 MVS Planning: Operations

Table 4. Summary of DEFAULT statement functions

Task DEFAULT
statement
keyword

MVS command to change
value

See page

Controlling console security:

v Operator logon to MCS and SMCS consoles LOGON Must re-IPL 54

Controlling the console screen function:

v Freezing the display of messages on MCS or SMCS
console screens

HOLDMODE Must re-IPL 76

Controlling message routing:

v Assigning routing codes for messages without any
specified target

ROUTCODE Must re-IPL 105

v Assigning the name of an alternate console group to
receive synchronous messages

SYNCHDEST Activate another CNGRPxx
member (SET CNGRP) that
defines the same alternate
console group but with
different console members.
See “Changing the
Specification of Alternate
Console Groups” on
page 46.

51

Controlling message processing:

v Maximum number of REPLY ids RMAX CONTROL M,RMAX 123

The HARDCOPY statement

You can use the optional HARDCOPY statement to define the characteristics of the
hardcopy message set and specify the hardcopy medium. You can control how to
record messages and commands for the system. After IPL, operators can use the
VARY command to do the following:

v Change the set of messages included in the hardcopy message set

v Assign either SYSLOG, OPERLOG, or an MCS printer as the hardcopy medium

v Stop a specific hardcopy medium provided another one is active.

For information about using the VARY command, see z/OS MVS System
Commands.

For information about hardcopy processing, see “Hardcopy Processing” on page 88.

Table 5 summarizes console functions you can control using the HARDCOPY
statement:

Table 5. Summary of HARDCOPY statement functions

Task HARDCOPY
statement
keyword

MVS command to change
value

See page

Controlling logging and system recording:

v Device number for hardcopy device, OPERLOG,
or SYSLOG

DEVNUM VARY devnum,HARDCPY 88

Chapter 2. Defining Your Console Configuration 19

Table 5. Summary of HARDCOPY statement functions (continued)

Task HARDCOPY
statement
keyword

MVS command to change
value

See page

v Routing codes for the hardcopy message set ROUTCODE VARY
devnum,HARDCPY,AROUT
VARY
devnum,HARDCPY,DROUT

88

v Hardcopy of commands by level CMDLEVEL VARY
devnum,HARDCPY,cmdlevel

88

v Assigning an alternate console group of devices as
backup logging devices

HCPYGRP Activate another CNGRPxx
member (SET CNGRP) that
defines the same alternate
console group but with different
console members.

46

v Controlling the recording of undelivered action
messages, WTOR messages, and important
informational messages

UD VARY ,HARDCPY,UD 88

v Defining 4-digit year HCFORMAT None 88

CONSOLxx and the Sysplex
When the operator initializes an MVS system with CONSOLxx, the console
definitions and attributes are in effect for the system. MCS and SMCS consoles
defined by CONSOLE statements are active, and the values specified for INIT,
DEFAULT, and HARDCOPY control console operations for the system. Operators
can use the CONTROL, MONITOR, MSGRT, SET, and VARY commands to change
many of the definitions after the system is active; the effect of the command,
however, is temporary. In a single system, changes made with commands last only
for the duration of the IPL. In a sysplex, changes made with commands last for the
life of the sysplex; that is, the changes remain in effect until every system in the
sysplex is shut down at the same time.

In a sysplex, certain CONSOLxx keywords have sysplex scope . When a system
with those keywords is first IPLed into a sysplex, the keyword values are in effect
for the entire sysplex.

For example, NAME and ROUTCODE on the CONSOLE statement have sysplex
scope. NAME specifies a unique name that identifies the console within the sysplex;
ROUTCODE defines the routing codes for messages that the console is able to
receive from all systems in the sysplex.

For INIT and DEFAULT keywords that have sysplex scope, CONSOLxx for the first
system that joins the sysplex determines the values in effect for all systems in the
sysplex. When other systems join the sysplex, MVS ignores changes to keyword
values with sysplex scope defined in CONSOLxx for those systems. For example, if
the action message retention facility (AMRF) is active in CONSOLxx for the first
system that joins the sysplex, the sysplex ignores the AMRF keyword specified for
other systems that join, and the action message retention facility is active for all
systems in the sysplex.

CONSOLxx keywords that have system scope apply only to the system on which
they are defined. For example, DEVNUM, UNIT, and PFKTAB for CONSOLE and all
keywords for HARDCOPY have system scope. The device number (DEVNUM),

20 z/OS V1R3.0 MVS Planning: Operations

device type (UNIT), and PFK table (PFKTAB) for the console apply only to the
system where the console is attached. Similarly, the hardcopy log specifications for
HARDCOPY apply only to the local system where CONSOLxx is defined.

Table 6 summarizes which keywords on each CONSOLxx statement are system or
sysplex in scope:

Table 6. Scope of CONSOLxx Keywords

CONSOLxx statement System scope Sysplex scope

CONSOLE DEVNUM
UNIT
PFKTAB

NAME
ALTERNATE
ALTGRP
AUTH
USE
CON
SEG
DEL
RNUM
RTME
AREA
UTME
MSGRT
MONITOR
ROUTCODE
LEVEL
MFORM
UD
MSCOPE
CMDSYS
SYSTEM
LOGON
LU

INIT PFK
MONITOR
CMDDELIM
MPF
UEXIT
MMS
MLIM
LOGLIM
NOCCGRP
APPLID

AMRF
RLIM
CNGRP
ROUTTIME
GENERIC

DEFAULT LOGON
HOLDMODE
ROUTCODE
SYNCHDEST

RMAX

HARDCOPY All keywords

Understanding the scope of CONSOLxx keywords is important when you plan your
console configuration for a sysplex. Depending on the needs of your installation and
the scope of CONSOLxx keywords, you can specify CONSOLxx for systems in a
sysplex in different ways. Consider the following ways to define CONSOLxx in a
sysplex:

1. Share a single CONSOLxx member for all systems.

2. Use unique CONSOLxx members for each system.

Chapter 2. Defining Your Console Configuration 21

3. Use unique CONSOLxx members for each system, but define all consoles in
the CONSOLxx member of the first system to join the sysplex.

The method you choose depends on how you want to use the console device
numbers. If you want to define a console with the same device number on two
different systems, the consoles must have different names. Therefore, if you use the
same device numbers for consoles across the sysplex, you must use option 2 on
page 21, or option 1 with symbolics. If the sysplex requires unique console device
numbers, you can use any of the methods.

The following sections explain the ways to define CONSOLxx in a sysplex in detail.

Sharing a Single CONSOLxx Member for All Systems
Sharing the same CONSOLxx for all systems in the sysplex provides a single,
consistent set of console definitions, as if you are defining all your consoles for a
single system.

In Figure 3, systems SYA and SYB share the same CONSOLxx member. SYA has
three physically attached consoles (CON1, CON2, and CON3); SYB has two
physically attached consoles (CON3 and CON4).

The following are statements from a CONSOLxx parmlib member that is shared by
both SYA and SYB:

CONSOLE ... NAME(CON1) AUTH(MASTER)

CONSOLE ... NAME(CON2) AUTH(MASTER)

CONSOLE ... NAME(CON4) MSCOPE(SYB)

CONSOLE ... NAME(CON3) MSCOPE(SYA)
SYSTEM(SYB)

INIT AMRF(Y)

CONSOLxx for Both Systems

S YA

C O N 3

S Y B

C O N 4

C O N 2

C O N 1

sig n a llin g

p a th s

Figure 3. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles

22 z/OS V1R3.0 MVS Planning: Operations

In this example:

v Values for INIT, DEFAULT, and HARDCOPY are the same across systems, and
the order in which systems join the sysplex does not affect the sysplex
environment.

v With names specified for all consoles in the configuration, MVS uses only four
IDs and saves on the maximum number of console IDs (99) that MVS can assign
in a sysplex. If you did not name the consoles in this example, MVS would use
eight separate IDs (one ID for each console statement in the sysplex).

v A console can be active on only one system at a time. In Figure 3 on page 22,
CON3 is physically attached to both SYA and SYB. Without specifying
SYSTEM(SYB) for CON3, CON3 would become active on either SYA or SYB,
whichever system joins the sysplex first. Specifying SYSTEM(SYB) ensures that
CON3 is activated only on SYB.

v Because CON4 is not physically attached to SYA, it becomes active only when
SYB joins the sysplex.

When two or more systems require unique values in a shared CONSOLxx member,
you can use system symbols to represent those values. When each system
processes CONSOLxx, the system replaces the system symbols with the
substitution texts that it has defined to the system symbols.

For example, suppose you want to define names for two consoles on two different
systems, and that the consoles are both at address X’3E0’. If both consoles to be
active at the same time, they require different names. If you plan to use one
CONSOLxx member for both systems, you can use system symbols to generate
unique console names while retaining the same device number, as follows:
CONSOLE DEVNUM(3E0)

NAME(C3E0S&SYSCLONE.) /* CONSOLE NAME "C3E0Snn" */
... /* Remaining CONSOLE keywords */

The console definition can then specify different names on different systems: For
example, if your installation accepts the default substitution text for &SYSCLONE
(the last two characters of the system name), the following console names result:
v C3E0SS1 on system SYS1
v C3E0SS2 on system SYS2
v C3E0SS3 on system SYS2

For more information about using system symbols in parmlib members, including
lists of valid system symbols, see the section on sharing parmlib members in z/OS
MVS Initialization and Tuning Reference.

Using Unique CONSOLxx Members for Each System
You can define separate CONSOLxx members for each system in the sysplex. Like
Figure 3 on page 22, Figure 4 on page 24, shows SYA with three physically
attached consoles (CON1, CON2, and CON3) and SYB with one physically
attached console (CON4). Console statements are defined in two CONSOLxx
members, one for each system in the sysplex.

Chapter 2. Defining Your Console Configuration 23

Note: In the examples that follow, the required CONSOLE keyword DEVNUM has
been omitted.

The following are the CONSOLxx statements for each system in this configuration:

CONSOLE. . .NAME(CON1) AUTH(MASTER) CONSOLE. . .NAME(CON4) MSCOPE(SYB)

CONSOLE. . .NAME(CON2) AUTH(MASTER) INIT MPF(01)

CONSOLE. . .NAME(CON3) MSCOPE(SYA)

CONSOLxx for SYA CONSOLxx for SYB

This configuration provides great flexibility for consoles in the sysplex. You can
define consoles based on the needs of each system. However, depending on when
the systems join the sysplex, the scope of the CONSOLxx keywords can affect how
the consoles operate in the sysplex.

For example, if an operator initializes SYA as the first system in the sysplex, CON1
is initialized as the master console. CON1 is the first console defined with master
authority, specified as AUTH(MASTER) on the CONSOLE statement. The AUTH
keyword has sysplex scope; depending on the order of the CONSOLE statements
in CONSOLxx, the first system to join the sysplex determines how the master
console is selected. When the first system joins the sysplex, the console defined
with AUTH(MASTER) on the first CONSOLE statement becomes the master
console.

In this configuration, CON2 has master authority. It can issue all MVS commands,
but because it is the second CONSOLE defined in CONSOLxx for SYA, it is not the
master console. Other consoles with master authority can join the sysplex, but as
long as CON1 is active, it remains the master console.

Understanding how the master console is defined in a sysplex is important
particularly in recovery situations, where the master console can serve as the

S YA

C O N 3

S Y B

C O N 4

C O N 2

C O N 1

sig n a llin g

p a th s

Figure 4. Console Configuration in a Sysplex with Two Systems and Four MCS Consoles

24 z/OS V1R3.0 MVS Planning: Operations

alternate for other consoles. “Planning Console Recovery” on page 43 describes
recovery situations in a sysplex using the master console.

For CONSOLxx keywords with system scope, keyword values apply only to the
system where the consoles are physically attached. For example, the MPF keyword
in CONSOLxx for SYB indicates that MPFLST01 is active when SYB is initialized.
However, because MPF has system scope, the default for MPF used on SYA
indicates that SYA does not perform MPF message processing. In a sysplex that
uses unique CONSOLxx members, it is therefore important to understand the scope
of CONSOLxx keywords for each system.

Defining All Consoles in the CONSOLxx Member of the First
System to Join the Sysplex
In Figure 5, all consoles are physically attached to SYA, and all consoles are
defined in CONSOLxx for the first system that is to join the sysplex (which is SYA):

Although SYB joins the sysplex with a different INIT statement, its CONSOLxx
member does not define additional MCS consoles.

The following are the CONSOLxx statements for each system in the configuration:

CONSOLE. . .NAME(CON1) AUTH(MASTER) INIT MPF(01)

CONSOLE. . .NAME(CON2) AUTH(MASTER)

CONSOLE. . .NAME(CON4) MSCOPE(SYB)

CONSOLE. . .NAME(CON3) MSCOPE(SYA)

INIT AMRF(Y)

DEFAULT HOLDMODE(YES)

CONSOLxx for SYA CONSOLxx for SYB

SYASYA SYB

signalling

paths

CON3

CON4

CON2

CON1

Figure 5. Console Configuration in a Sysplex with Four MCS Consoles Attached to One
System

Chapter 2. Defining Your Console Configuration 25

The first system to join the sysplex (SYA) is the focal point of console operations for
the sysplex configuration in Figure 5 on page 25. Thus, you are able to define all
your MCS CONSOLE statements for the entire sysplex in one place, in this
example CONSOLxx for SYA.

SYB uses an INIT statement with a specific MPF value that applies to that system.
Because MPF has system scope, the value applies only to SYB.

If SYA in Figure 3 on page 22 fails, the sysplex is unable to use any MCS consoles
because SYB does not have any CONSOLE statements defined in its CONSOLxx
member. Using the system console and defining alternative consoles, such as
SMCS consoles or extended MCS consoles, are ways to resolve the problem.

SMCS Console Considerations
SMCS consoles are MCS consoles that use VTAM services for input and output.
SMCS consoles provide most of the same functions as MCS consoles with the
following exceptions:

v Synchronous WTO/R, also known as disabled console communication facility
(DCCF), is not supported for SMCS consoles. The system console or an MCS
console must be used instead.

v SMCS consoles are not available during NIP. The system console or an MCS
console must be used instead.

v VTAM must be active for SMCS to be active. The system console and MCS
consoles do not rely on VTAM, and these can be used before VTAM is active.

v SMCS consoles must be activated differently than MCS consoles. The activation
process depends on the console definitions, but in all cases, VARY CONSOLE
and VARY CN, ONLINE do not work for SMCS.

v SMCS does not support output-only (message stream and status display)
consoles. SMCS consoles must always be full-capability consoles.

v SMCS does not support printer consoles, and cannot be used as hardcopy
devices.

Because an SMCS console is connected through a network and uses VTAM
services, the VTAM commands VARY NET and HALT NET, as well as network
problems, can affect console operations.

Installing SMCS
An SMCS console can be a real 3270 type device, but usually it will be a 3270
emulator such as IBM Personal Communications. SMCS supports VTAM LU Type 0
or Type 2, and SMCS consoles must support Extended Data Stream and the Read
Partition Query function.

Installing SMCS consoles requires some VTAM Definitions:

v Define the SMCS application.

v Create a LOGON mode table (optional).

v Indicate that certain LUs are always to be used for SMCS (optional).

CONSOLxx also requires some changes:

v Specify that the SMCS application is to be started.

v Define some SMCS consoles.

Finally, RACF requires some definitions:

26 z/OS V1R3.0 MVS Planning: Operations

v Userids for operators.

v Command authority.

Defining SMCS to VTAM
To define the SMCS application to VTAM, you must update the ATCCONxx member
of SYS1.VTAMLST to point to a member of SYS1.VTAMLST that defines the SMCS
application id (APPLID). You could write the SMCS application definition as:

SMCS VBUILD TYPE=APPL
SMCS&SYSCLONE. APPL

You can also choose to specify DLOGMOD and MODETAB, but you should take
defaults for all other keywords. Each system within the sysplex that will run SMCS
must have a unique application name. See z/OS Communications Server: SNA
Resource Definition Reference for more details.

A LOGON mode table can be provided to define the session protocols for devices
that will be used as SMCS consoles. Each LOGON mode table is assembled and
link-edited into SYS1.VTAMLIB. In most cases, the same LOGON mode table that
is used for TSO will be suitable for SMCS.

The DLOGMOD and/or MODETAB specifications indicate which LOGON mode
table to use. The specifications can be made on:

v The APPL statement pointed to by ATCCONxx.

v The LOCAL statement when defining local non-SNA major nodes.

v The LU statement when defining SNA major nodes.

See z/OS Communications Server: SNA Resource Definition Reference for details.

If certain devices are always used for SMCS, they can be defined to automatically
log on to the SMCS application when the device becomes active using the
LOGAPPL keyword on the LOCAL or LU statements:

LOCALDEV LBUILD
S&SYSCLONE.D3E0 LOCAL CUADDR=3E0

TERM=3277,
FEATUR2=(MODEL2),
ISTATUS=ACTIVE,
USSTAB=USSCNH,
DLOGMOD=S3270,
LOGAPPL=SMCS&SYSCLONE

Figure 6 on page 28 shows a sample LOGON mode table entry. Table 7 on page 28
defines the keywords in the LOGON mode table entry, and the values that SMCS
expects. Table 8 on page 28 provides details about the values to specify for the
PSERVIC keyword.

Chapter 2. Defining Your Console Configuration 27

Table 7. Keyword Definitions

Keyword Definition Local Non-SNA Value SNA Value

FMPROF Function
Management
Profile

X’02’ X’03’

TSPROF Transmission
Services Profile

X’02’ X’03’

PRIPROT Primary LU
Protocol

X’71’ X’B1’

SECPROT Secondary LU
Protocol

X’40’ X’90’

COMPROT Common LU
Protocol

X’2000’ X’3080’

RUSIZES Maximum length of
data in a request
unit

X’0000’ X’87F8’ The X’87’
indicates a 1024–byte
maximum secondary
logical unit RU send size
and the X’F8’ indicates a
3840–byte maximum
primary logical unit RU
send size.

TYPE Bind type 1 1

PSERVIC LU Presentation
Services Profile

X’008000000000185000000300’Value depends on the
device type. See Table 8
for values.

Table 8. PSERVIC Values for SNA Devices

Byte Value Definition

1 X’00’ or X’02’ LU type 0 or LU type 2. LU0 indicates that the
session protocol is determined by the
application. SMCS will use LU0 for non-SNA
locally attached 3270 data stream devices.
LU2 indicates that the session protocol is for
an SNA 3270 data stream device. SMCS will
use this for SNA locally or remotely attached
devices.

**
* *
* DYNAMIC LOGMODE ENTRY FOR SNA *
* 3270 DISPLAYS (APPLIES TO QUERIABLE TERMINALS) *
* *
**
DYNSNA MODEENT LOGMODE=DYNSNA,COS=INTERACT,APPNCOS=#INTER,

FMPROF=X’03’,
TSPROF=X’03’,
PRIPROT=X’B1’,
SECPROT=X’90’,
COMPROT=X’3080’,
RUSIZES=X’87F8’, * OUTBOUND 3840 INBOUND 1024
TYPE=1,
PSERVIC=X’028000000000000000000300’

Figure 6. Sample LOGON Mode Table Entry

28 z/OS V1R3.0 MVS Planning: Operations

Table 8. PSERVIC Values for SNA Devices (continued)

Byte Value Definition

2 X’80’ Indicates that query is supported. This is the
recommended value for byte 2 whenever
possible. If X’00’ is specified, the alternate
screen size may be required depending on the
presentation space size indication.

3,4,5,6 0 These must be zero.

7,8 X’0000’ Screen size when in default presentation
space size (24 rows x 80 columns).

9,10 Possible values:

v X’0000’

v X’1850’

v X’1B84’

v X’2050’

v X’2B50’

Screen size when in alternate presentation
space size. This value depends on the
specification in byte 11 and the device type to
be used as an SMCS console. Byte 9 (number
of rows) is limited to 8 (X’08’) through 255
(X’FF’). Byte 10 (number of columns) is limited
to 80 (X’50’) through 255 (X’FF’). The product
of bytes 9 and 10 (rows * columns) must be
less than or equal to 16,383. If both bytes 9
and 10 are zero, the screen size is determined
by querying the device. Possible values are:

v X’0000’ Screen size determined by querying
the device. Byte 11 contains an X’03’. This
is the recommended value for bytes 9
and 10.

v X’1850’ 24 rows by 80 columns. Byte 11
contains a X’02’, X’7E’ or X’7F’.

v X’1B84’ 27 rows by 132 columns. Byte 11
contains a X’7F’.

v X’2050’ 32 rows by 80 columns. Byte 11
contains a X’7F’.

v X’2B50’ 43 rows by 80 columns. Byte 11
contains a X’7F’.

11 Indicates which screen size should be used.
Supported values are:

v X’02’ - Screen size is always 24 rows by 80
columns

v X’03’ - Default presentation space is 24 x 80
and the alternate presentation space is
specified in the Query Reply. This is the
recommended value. If this value is
specified, byte 2 must contain a X’80’.

v X’7E’ - The default screen size is to be
used.

v X’7F’ - The alternate screen size is to be
used.

12 0 Must be zero.

For more information, see z/OS Communications Server: SNA Resource Definition
Reference.

Updating CONSOLxx
To indicate that the SMCS application is to be started, you must define the SMCS
APPLID on the INIT statement of CONSOLxx:

Chapter 2. Defining Your Console Configuration 29

INIT APPLID(SMCS01)

If you omit APPLID, SMCS will not be available for the life of the system. You can
change the APPLID after the system is active, but only when an APPLID was
specified in CONSOLxx during IPL.

SMCS also supports the use of VTAM generic resource. VTAM generic resource
names allow an operator who logs on to be connected to the system that VTAM
selects rather than being connected to a specific system. Specifying GENERIC in
CONSOLxx provides flexibility and promotes effective recovery from problems.
Specifying a specific system when logging on, in contrast, is sometimes necessary
when a particular operator requires affinity to facilities available on a specific
system. When you identify a specific system, make sure that the message scope
you define in CONSOLxx matches the system you identify.

VTAM has the following requirements for using generic resource names:

v The system must be part of a Parallel Sysplex (PLEXCFG=MULTISYSTEM), and
it must have a coupling facility.

v The coupling facility must have the generic resource structure defined. The
default name of the structure is ISTGENERIC.

v VTAM must be an APPN node.

SMCS consoles must be defined in CONSOLxx, using the CONSOLE statement.
With a few exceptions, any keywords and values that you can specify for a MCS
console can also be specified for a SMCS console.

SMCS adds a value for the DEVNUM keyword and the LU and LOGON keywords.

SMCS and MCS console definitions can be mixed in the same CONSOLxx. Both
types of consoles can coexist within the same system, as well as within a sysplex.
An example of a SMCS console definition follows:

CONSOLE DEVNUM(SMCS)
NAME(CON1)
ALTGRP(GROUP1)
AUTH(MASTER)
LOGON(REQUIRED)
LU(S01LU24)
RNUM(20)
RTME(1/4)

SMCS consoles are not associated with a particular system. A SMCS console
defined on one system can be activated on another system, provided that the
SMCS application is active on both systems.

Starting the SMCS Application
The SMCS application is designed to start, and restart, automatically. The SMCS
application will attempt to connect to VTAM using the SMCS APPLID every 15
seconds. If the APPLID is deactivated, the SMCS application will attempt to restart
(reconnect to VTAM using the SMCS APPLID) every 15 seconds.

The SMCS APPLID must be active before SMCS can use it. Normally, the APPLID
will be defined to be active once VTAM starts. If there is a need to deactivate the
SMCS APPLID, enter the following:

VARY NET,INACT,ID=applid[,I or ,F]

30 z/OS V1R3.0 MVS Planning: Operations

This command will cause the SMCS application to stop, deactivate all consoles
connected to the specified APPLID, and cause the SMCS application to try to
reconnect every 15 seconds.

There are some functions that require you to deactivate and reactivate the SMCS
APPLID, called ’recycling the APPLID’.

Changing APPLIDs: It may be necessary to change the SMCS APPLID for a
system. The following command will change the APPLID.

K M,APPLID=applid

SMCS will continue to use the old APPLID until it is deactivated with the VARY
NET,INACT command. Once the old APPLID is deactivated, the new one may need
to be activated using the V NET,ACT command. During the time that the old
APPLID is still in use, message IEE821E will be issued as a reminder that SMCS
needs to be recycled on that system. You can issue D C,SMCS to verify your
actions.

The new APPLID is only in effect for the life of the system. CONSOLxx will need to
be updated to use the new APPLID on the next IPL.

Using VTAM Generic Resource Names: Use of generic resources is optional. If
you use generic resources, specify GENERIC on the INIT statement. When you
specify GENERIC, you supply one generic name for the entire sysplex. You specify
the name on the INIT statement:

INIT APPLID(SMCS01) GENERIC(SMCSGENR)

Like APPLID, GENERIC can be changed after the system is active. Unlike APPLID,
if GENERIC is not specified in CONSOLxx, you can add GENERIC later.

For more information about VTAM generic resources, see z/OS Communications
Server: SNA Resource Definition Reference.

Changing GENERICs: The operator can change the SMCS GENERIC that is in
use by the sysplex using the following command:

K M,GENERIC=generic

The operator can also turn off the SMCS GENERIC by using:
K M,GENERIC=*NONE*

Each SMCS application in the sysplex will continue to use the old GENERIC until
that SMCS application is recycled, using the V NET,INACT and V NET,ACT
commands. Each SMCS can be recycled separately. Once each SMCS application
is recycled, it will use the new GENERIC value, but any SMCS application that has
not yet been recycled will continue to use the old GENERIC value. Therefore, it is
possible to have some SMCS applications using the old GENERIC value and some
using the new GENERIC value. You can issue D C,SMCS to verify your actions.

Message IEE820E will be issued as a reminder that an SMCS needs to be recycled
and will remain outstanding until all SMCS applications are using the new
GENERIC value.

Defining SMCS Consoles
The first parameter on the CONSOLE statement must be the DEVNUM parameter.
SMCS consoles must specify DEVNUM (SMCS). All other parameters on the
CONSOLE statement may be specified in any order. Do not specify the UNIT,

Chapter 2. Defining Your Console Configuration 31

ALTERNATE, or SYSTEM parameters on the CONSOLE statement. Also, the only
acceptable value for the USE keyword is FC.

SMCS consoles require the NAME parameter. If NAME is not specified, or is not
valid, the CONSOLE statement is rejected. NAME is recommended for every
CONSOLE statement in CONSOLxx, including subsystem consoles, but only SMCS
consoles require it. Each console in the sysplex must have a unique name. System
symbolics can be used in the name and throughout CONSOLxx so that one
CONSOLxx member can be used for the entire sysplex.

SMCS does not support the use of alternate consoles; ALTGRP should be used
instead, although it is optional. All consoles should have at least one console to
switch to. For more information on defining an ALTGRP, see z/OS MVS Initialization
and Tuning Reference.

SMCS consoles support the AUTH keyword in the same way that MCS consoles
do. For a sysplex with MCS consoles or both MCS and SMCS consoles, the first
MCS console listed in CONSOLxx with MASTER authority becomes the sysplex
master console. For a sysplex with only SMCS consoles, the first console with
MASTER authority that becomes active. Because it is impossible to predict which
console will active first, do not give MASTER authority to any console that cannot
be the sysplex master console and use RACF to prevent the console from
becoming the master console.

Predefined LU and LOGON: With predefined LU and LOGON, you can bypass
the SMCS selection screen by indicating that a particular console name is always
associated with a particular LU. Once the LU is logged on to the SMCS application,
the console becomes active.

The LOGAPPL VTAM function indicates that a particular LU automatically logs on to
a particular application when the LU becomes active. By indicating that a particular
LU automatically logs on to the SMCS application with LOGAPPL, and indicating
that the LU is associated with a particular console name with a predefined LU, a
console can be activated automatically once VTAM is active, in much the same way
that MCS consoles activate automatically during IPL.

The predefined LU allows a SMCS console to activate at one particular LU. To
specify a predefined LU, specify the LU keyword on the CONSOLE statement. If a
predefined LU is specified for a console, only that console can be activated at that
LU. No other console can be activated at that LU, and that console can only be
activated at that LU. The predefined LU can be changed later with the VARY CN
command.

SMCS consoles also support the LOGON keyword on the CONSOLE statement.
This keyword allows the console to override the LOGON value on the DEFAULT
statement. However, some of the definition and operation of LOGON for SMCS is
different than MCS and also depends on whether or not a predefined LU is
specified.

If a predefined LU is specified, the LOGON definitions are the same as for MCS
consoles:

v LOGON (OPTIONAL) indicates that the console does not need to be logged on.

v LOGON (AUTO) indicates that the console is automatically logged on.

v LOGON (REQUIRED) indicates that the console must be logged on before
commands can be issued.

32 z/OS V1R3.0 MVS Planning: Operations

v LOGON (DEFAULT) indicates that the console is to use the LOGON value
specified on the DEFAULT statement.

v If LOGON is not specified, the console also uses the LOGON value specified on
the DEFAULT statement.

If a predefined LU is not specified:

v LOGON(OPTIONAL), LOGON(AUTO), LOGON(REQUIRED), and
LOGON(DEFAULT) work the same as if a predefined LU was
specified.LOGON(REQUIRED) is, however, strongly recommended.

v If LOGON is not specified, the console default is LOGON(REQUIRED). The
console does not use the LOGON value specified on the DEFAULT statement.

v Regardless of whether a predefined LU is specified or not, LOGON is different
for MCS and SMCS consoles. An MCS console always displays all messages
that it receives; the console does not have to be logged on by an operator to
receive messages. An SMCS console, in contrast, always displays messages
queued directly to it. However, to display all messages that it normally receives,
the console must be defined with LOGON(OPTIONAL), either by default or
because it was specifically indicated, or it must be logged on by an operator.

Changing LOGON: The VARY CN command allows you to change the LOGON
value of an MCS or SMCS console after the system is active:

VARY CN(consname),LOGON=OPTIONAL
AUTO
REQUIRED
DEFAULT

The change will take effect immediately.

This command requires MASTER console authority. It may be protected with the
RACF MVS.VARYLOGON.CN profile in the OPERCMDS class, and it requires
CONTROL authority.

LOGON can be combined with other parameters on the VARY command. The
console can be active or inactive when LOGON is changed.

Changing the Predefined LU: The VARY CN command can also change the
predefined LU of a SMCS console:

VARY CN(consname),LU=luname

The same command can also turn off the predefined LU of a SMCS console::
VARY CN(consname),LU=*NONE*

However, if the console is not LOGON(REQUIRED), then an error message is
issued to prevent a change that could accidentally create a security exposure. In
that case, the LOGON keyword must be specified along with the LU keyword. The
change will take effect immediately.

This command requires MASTER console authority. It may be protected with the
RACF MVS.VARYLU.CN profile in the OPERCMDS class, and it requires
CONTROL authority.

LU can be combined with other parameters on the VARY command.

Chapter 2. Defining Your Console Configuration 33

Providing Security for SMCS Consoles
Now that operator consoles can be located anywhere, each installation must ensure
proper security controls of operator access. There are many security issues to
address, and these issues are installation-dependent.

Userids: The first thing to consider are userids. Each operator needs an individual
userid that appropriately restricts access to controlled functions. Most security
products control access based on the userid that is logged on to the console, not
the console itself. Controlling access is very difficult unless LOGON(REQUIRED) is
in effect.

Commands: Certain commands should be restricted only to users who need to
issue those commands. This book lists all of the MVS commands that can be
issued and the resource names that you can use to protect them. See Table 10 on
page 62 for more information.

SMCS has introduced some new functions on the VARY command that could allow
operators to create security exposures. SMCS options on the VARY command need
particular consideration; VARY CN,LOGON and VARY CN,LU are examples. These
commands require MASTER console authority, and it is a very good idea to use a
security product to limit access to the commands. See Table 10 on page 62.

Application ID: Access to the SMCS APPLID can be protected through the RACF
APPL class. You can use the APPL class to restrict certain users from accessing
certain SMCS applications while allowing access to others, which means that
certain users can activate consoles on some systems but not others. See “Planning
Console Security” on page 52 for more information.

Console: The CONSOLE class of the security product can be used to restrict
users from certain consoles. See “Planning Console Security” on page 52 for more
information.

Network: There are security considerations for SMCS consoles at the network
level. An SMCS console may display sensitive data, and since this data is flowing
across the network, it must be protected. Ways to protect this data include:

v For TCP/IP networks, Secure Sockets Layer (SSL) security can be implemented
to protect the IP session.

v Session level encryption can be used to protect a SNA session.

v Dedicated IP ports can be assigned to restrict access to SMCS.

See IBM SecureWay Communications Server and IBM SecureWay Security Server
publications for more information.

Activating an SMCS Console
After the installation and definitions are complete, you can IPL the system. The
system console or an MCS console must be used to do perform the IPL. Once
MVS command processing is available, VTAM must be started in one of the
following ways:

v A START VTAM command in COMMNDxx could start VTAM.

v Automation could START VTAM.

v An operator could START VTAM manually from the system console or an MCS
console.

Once VTAM is initialized and the VTAM functions are available, the SMCS
application will start automatically. SMCS consoles can then be activated.

34 z/OS V1R3.0 MVS Planning: Operations

Assuming the SMCS is installed on a system and some SMCS consoles are
defined, there are several ways to activate an SMCS console. For example, an
operator or system programmer can:

1. Walk up to a terminal, or telnet to the system, to get to an active VTAM logon
screen

2. Log on to the SMCS application, which displays an SMCS Console Selection
screen. See Figure 7.

3. On the SMCS Console Selection screen, enter a valid SMCS console name.

4. If the name is valid, the next screen is an SMCS console screen that displays
messages unless logon is required. If logon is required, the messages appear
after the operator logs on.

Specifying a predefined LU can bypass the SMCS Console Selection screen, and
the LOGAPPL VTAM function allows automatic logon.

Deactivating an SMCS Console
Once an SMCS console is active, you might need to deactivate it. There are
several ways to deactivate an SMCS console:

v The operator can issue the LOGOFF command at the console to deactivate the
console.

v VARY consname,OFFLINE can deactivate the console.

v VARY CN (consname),OFFLINE can also deactivate the console.

SMCS consoles will also be deactivated by the system when VTAM or the SMCS
application is deactivated.

SMCS CONSOLE SELECTION

Enter the Console Name you want to access and press ENTER.

CONSOLE NAME ===> (Required. This name must have been defined as an
SMCS console in CONSOLxx at IPL).

You are attempting to access:

SYSPLEX: plexname SYSTEM: sysname

Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5694-A01 (C) Copyright IBM Corp. 2001
All rights reserved.

Figure 7. SMCS Console Selection Screen

Chapter 2. Defining Your Console Configuration 35

Removing Console Definitions from a Configuration
You can delete the definition of any MCS, SMCS, or Subsystem console defined in
CONSOLxx. In a sysplex, deleting a console definition releases the console id
associated with the console and makes it available for other console definitions.
Thus, you have flexibility controlling the number of console ids you need in an
active console configuration. You cannot, however, delete the system console or an
extended MCS console.

For example, if you define 10 consoles in CONSOLxx and you have used the VARY
CONSOLE OFFLINE command for one of the consoles (it is inactive), the system still
associates the console id with the inactive console. Using the console service, you
can delete the console definition making the console id available for reuse. When
you add a new console, the system reassigns the console id.

To remove a console definition, use the sample JCL for program IEARELCN in
SYS1.SAMPLIB. “Sample Invocation of IEARELCN” describes the sample job, the
programming environment, and the return and reason codes for invoking the
console service.

Before you remove a console definition, issue DISPLAY CONSOLES to determine if the
console is defined as an alternate. If you delete the definition for a console that is
defined as an alternate for another console, you remove the alternate console as
back up. If a console switch to the alternate is required, the system cannot switch
because the alternate has already been removed. Use VARY CN to change the list of
potential alternates for a console (ALTGRP) and VARY CONSOLE to change the
definition for ALTERNATE.

The following restrictions for removing a console definition apply:

v Dynamic I/O reconfiguration can be performed for a device that has been defined
as an MCS console in CONSOLxx. If you want to change the I/O configuration of
a device which is defined as a console, you must first delete the console
definition.The sample program IEARELCN can be used to do this. After the
definition has been removed, the device can be dynamically reconfigured, but it
cannot be used as a console again, until a re-IPL. In a mixed-level sysplex,
dynamic I/O reconfiguration is not supported on the systems below OS/390
Release 6. For more information about dynamic I/O reconfiguration, see z/OS
HCD Planning.

v The console must be defined in CONSOLxx.

v The console must not be active.

v A subsystem console that is in use must first be released. (See z/OS MVS Using
the Subsystem Interface.)

v You cannot remove the console definition for a console when a no-consoles
condition exists.

v When a no master console condition exists, you cannot remove a console that is
the last active master console.

Sample Invocation of IEARELCN
SYS1.SAMPLIB provides a sample program in member IEARELCN to remove a
console definition.

//jjj JOB
//sss EXEC PGM=IEARELCN,
// PARM=’CONSNAME(xxxxxxxx)’
//SYSPRINT DD SYSOUT=A

36 z/OS V1R3.0 MVS Planning: Operations

xxxxxxxx : is the name of the console whose definition is to be removed.

Environment
You can also invoke the console definition removal service (IEAVG730) from an
authorized program. IEAVG730 receives control with the following environment:
Minimum authorization: Supervisor state and key zero.
Dispatchable unit mode: Task
Cross Memory mode: PASN=HASN=SASN
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary

address space

Before you invoke IEAVG730 from your program, ensure that the following general
purpose register (GPR) contains the specified information:

Register Contents

1 Address of a fullword containing the address of a field with the
console name.

Return and Reason Codes
When control returns from the console definition removal service (module
IEAVG730), the return code appears in register 15, and the reason code in register
0:

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Successful processing.

04 00 Caller is not authorized. Ensure that caller is in
supervisor state.

04 04 Caller is not authorized. Ensure that caller is in key
zero.

04 08 Caller is in cross memory mode. Ensure that PASN =
HASN = SASN.

04 0C System level is not valid. In a sysplex, all the
systems in the sysplex must be at OS/390 (R6 or
later) or z/OS.

04 10 A no-consoles condition exists in the system or
sysplex. Invoke this service again when the
no-consoles condition is relieved.

08 00 Recovery cannot be established. Report error to the
appropriate IBM support personnel.

08 04 Retry from an abend. Report error to the appropriate
IBM support personnel.

08 08 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 0C This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 10 Secondary recovery cannot be established. Report
error to the appropriate IBM support personnel.

Chapter 2. Defining Your Console Configuration 37

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 14 Retry from an abend for the secondary recovery
routine. Report error to the appropriate IBM support
personnel.

08 18 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 1C This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

08 20 This reason code is for IBM internal diagnostic
purposes only. Record it and supply it to the
appropriate IBM support personnel.

0C 00 Console is active. If the console is an MCS console,
deactivate the console. If the console is a subsystem
console, the console is currently allocated to a
subsystem. Release the subsystem console, and try
the service again to remove the console.

0C 04 Console is not an MCS or SMCS console. Ensure
that the console to be removed is for an MCS or
SMCS console defined in CONSOLxx.

0C 08 Console is not defined in CONSOLxx. Ensure that
the active CONSOLxx member contains a CONSOLE
definition statement for an MCS or SMCS or
subsystem allocatable console.

0C 0C The console definition to be removed is for the
master console and a no master console condition
exists. Ensure that you have a new active master
console and try the service again to remove the old
master console.

Defining Devices as MCS or SMCS Consoles
The first step in planning an MVS console configuration is to define the I/O devices
to MVS. Ensure that you define each I/O device that you plan to use as an MCS
console with the hardware configuration definition (HCD) program for each MVS
system at the installation. Use the HCD Add Device panel to define the device
number and other information that identifies the device to MVS.

Note: MCS consoles are locally attached to the system through control devices
that do not support Systems Network Architecture (SNA) protocols. SMCS
consoles are not defined to HCD.

Use the following keywords on the CONSOLE statement to define a device as an
MCS console.
DEVNUM Defines the console device number.
NAME Defines the console name.
UNIT Specifies the type of device to be used as an MCS console.

The device number you specify for each console on a CONSOLE statement -
CONSOLE DEVNUM - must correspond to the device number specified through
HCD on the Add Device panel. Except for DEVNUM, which must be first, you can

38 z/OS V1R3.0 MVS Planning: Operations

specify the keywords in any order. For MCS consoles that are managed by a
subsystem (subsystem-allocatable consoles like NetView), you can specify:
CONSOLE DEVNUM(SUBSYSTEM) NAME(name)

where name is the name of the subsystem console.

You can specify DEVNUM(SYSCONS) to define the system console in CONSOLxx.
See “The System Console and CONSOLxx” on page 138.

Note: The system pins UCBs for console devices defined in CONSOLxx at IPL
time. Therefore, you must IPL or remove the console definition with
IEARELCN if you delete console devices via HCD.

Use the following keywords on the CONSOLE statement to define the device
number and name of an SMCS console.

DEVNUM
Specify SMCS. This must be the first parameter on the CONSOLE
statement.

NAME Specify the name of the SMCS console. If the name is not valid, the system
rejects the CONSOLE statement.

Do not specify the UNIT, ALTERNATE, or SYSTEM keywords on the CONSOLE
statement for SMCS consoles.

Devices MVS Can Use as MCS Consoles
MCS consoles are either output-only devices like printers or input/output devices
like a 3279 display console. You can define printers as hardcopy devices and
specify the printer device on the HARDCOPY statement.

Input/output devices are also called display consoles. An MCS display console can
be a combination input (operator-to system) and output (system-to-operator) device
whose function you can control. You control how to use the display console with the
USE attribute so that it can be a full-capability console (send commands and
receive messages), or an output-only console like a message stream console or
status display console, from which an operator cannot enter commands. For
information on USE, see “Defining the USE Attribute” on page 71.

If you use 3270-X devices as display consoles, consider the following:

v If the console device you plan to use is attached to a control unit that supports
the Read Partition Query Feature and the device also supports the feature,
specify 3270-X for UNIT.

v Only 3270-X devices can display synchronous messages issued during certain
recovery procedures. (For information about synchronous messages, see
“Display of Synchronous Messages” on page 51.)

In this book, references to devices often do not mention model numbers. When you
see a device referenced without a model number, assume the reference applies to
all models of the device.

Chapter 2. Defining Your Console Configuration 39

Reference
For a list of devices that MVS can use as MCS consoles (including eligible
3270-X devices), see z/OS MVS Initialization and Tuning Reference.

For information about using HCD to define console devices, see z/OS HCD
Planning.

With z/OS V1R1 and higher, MVS can also use SMCS consoles. See “Multiple
Console Support and the MVS Environment” on page 2

Using Console Names
Define each console by device number and device unit on the CONSOLE statement
and name each MCS console. Console names are recommended for all CONSOLE
statements in CONSOLxx. Console names are required for SMCS consoles and
optional for other types of consoles.

If you do not define an MCS console by name, the console ID that the system
assigns becomes the name of the console. The MCS console ID is a two-digit
number from 1 to 99 (01 - 99) based on the order in which the CONSOLE
statements appear in CONSOLxx.

Using console names for MCS consoles has several advantages. Console names
are generally easier to remember and use than console IDs. Also, you can choose
a console name that indicates a specific function for the console. (For example, you
could define a console name of TAPE for a console that receives messages about
tape mounts.) Operators and system programmers can use console names instead
of console IDs on MVS commands and macros. You also specify console names for
alternate consoles that you define as backup consoles and in alternate console
group definitions. For consoles in a sysplex, assigning console names allows you to
define an alternate or backup console that is attached to another system. (See
“Planning Console Recovery” on page 43.)

Using Console Names in a Sysplex
When defining consoles for a sysplex, plan to use names for MCS and SMCS
consoles and subsystem-allocatable consoles. A good way to specify unique names
and establish a consistent naming convention for all the consoles in a sysplex is to
use system symbols in console definitions, as described in “Sharing a Single
CONSOLxx Member for All Systems” on page 22.

In a sysplex, the console name uniquely identifies the console to the sysplex for the
life of the sysplex. The console ID identifies a console only for the life of the IPL.
Because MVS can assign a different console ID to a console on a system that
re-IPLs, using console IDs is unpredictable.

For a subsystem-allocatable console if you do not use console names, MVS
assigns the next available console ID for the console whenever it rejoins the
sysplex. For example, an unnamed subsystem-allocatable console, is assigned a
console ID of 05 in a sysplex with four active consoles (IDs 01, 02, 03, and 04). If
the system with the subsystem-allocatable console, leaves the sysplex and rejoins
later, MVS does not reassign the console ID 05 to the console, but instead assigns
the next available ID 06. Even if you have only five consoles in the sysplex, MVS
assigns the next available ID. In this example, that increases the number of console
IDs in use for the sysplex from 5 to 6 even though only five consoles are active.

40 z/OS V1R3.0 MVS Planning: Operations

Using console names avoids using more console IDs in a sysplex than the sysplex
needs. As long as you do not change the name in CONSOLxx, the console name
always identifies the console in a system or sysplex. MVS always associates the
console name to a specific ID that does not change from IPL to IPL.

You can also define the same console to different systems in the sysplex by using
the console name. In the following example, a console named BACKUP is defined
in CONSOLxx for three systems in a sysplex (SYA, SYB, and SYC). A channel
switching device allows an operator to switch the console from system to system:

CONSOLxx for each system contains the following statements:

For SYA:
CONSOLE DEVNUM(3F5) NAME(BACKUP)

For SYB:
CONSOLE DEVNUM(3D0) NAME(BACKUP)

For SYC:
CONSOLE DEVNUM(3E0) NAME(BACKUP)

BACKUP can be active on only one system in the sysplex at a time. If BACKUP is
active on SYA and SYA fails, the operator can switch BACKUP to SYB or SYC and
activate the console using the console name on the VARY CN command. The
attributes that were assigned to BACKUP before SYA failed are now inherited by
the newly activated BACKUP console on either SYB or SYC.

In a sysplex, you can use the console name to define an alternate to a console that
resides on a different system. If a console fails and its alternate is defined on a
different system, the sysplex can switch to the alternate if it is active. For
information on console recovery, see “Planning Console Recovery” on page 43.

SYA

SYC

SYB

Channel
switching device

MCS Console
NAME(BACKUP)

Chapter 2. Defining Your Console Configuration 41

Restrictions for Console Names
Console names must be from 2 to 8 characters and cannot start with a digit.
Characters are alphanumeric and can also include the characters #, $, and @.
When naming MCS consoles, do not use the following names:
v HC
v INSTREAM
v INTERNAL
v OPERLOG
v SYSIOSRS

Note about SYSIOSRS
Console name SYSIOSRS is reserved for system use.

The IOSAS address space must have an associated “trusted” userid define
in the RACF started procedures table (ICHRIN03). This will permit the
IOSAS address space to issue commands to the SYSIOSRS extended
console. For more information, see z/OS Security Server RACF Security
Administrator’s Guide

v SYSLOG
v UNKNOWN

Also, do not use console names that might be confused with device numbers. For
example, the following name is not a good choice:
NAME(BAD)

For information on the system console and naming restrictions, see “Naming the
System Console” on page 138.

Attaching Consoles to Particular Systems in a Sysplex
Use the optional SYSTEM keyword parameter in the CONSOLxx parmlib member
to specify the system in the sysplex to which MVS should attempt to activate the
console. This parameter will primarily refer to consoles that are physically attached
to multiple systems and managed by a physical switch. In this case, the SYSTEM
parameter determines which system should attempt to activate the console.

If SYSTEM is specified and the SYSTEM value names the current system being
initialized, then MVS will activate the console device if the device is attached and in
ready status. If the SYSTEM value names a system other than the one currently
being initialized, then MVS will not activate the console even if it is attached and
ready on the system being initialized. If SYSTEM is not specified, MVS activates
the console on the first system to join the sysplex (to which the console is attached
and ready).

Attention: Use the SYSTEM parameter with great care whenever there is more
than one CONSOLxx parmlib member for the sysplex. If you define multiple
CONSOLE statements with the same DEVNUM and specify a SYSTEM differently
on different statements, the system will activate the device as a console on the first
system where it (a) is online and ready, and (b) has a SYSTEM parameter value
equal to the name of the IPLing system, or has no SYSTEM keyword.

It is possible that a device will not be ready (not turned on) when the system or
sysplex is being initialized. The device might even be attached to another system
as the sysplex is initialized (for example, during an error recovery situation). When

42 z/OS V1R3.0 MVS Planning: Operations

|

|
|
|
|
|

you decide to use the device, first turn it on or re-attach it to the proper system,
then issue a VARY CN,ONLINE command for the console.

During VARY CN,ONLINE command processing, the CONSOLE statement
SYSTEM value is used to determine where to process the VARY CN,ONLINE
command (unless the console was previously active or SYSTEM is specified on the
VARY CN,ONLINE command).

Note: SMCS consoles are not associated with a particular system and so the
SYSTEM keyword is not valid for these types of consoles. An SMCS console
defined on one system can be activated on another system (provided both
systems have SMCS active).

Planning Console Recovery
Planning recovery for consoles ensures that your operators are able to respond to
system problems and continue to monitor the MVS environment. You can specify:

v A group of consoles from which MVS can select an eligible alternate for a
console

v A single alternate for a console

You can specify a group of consoles that can serve as candidates:
v For alternates to a console
v For the master console when no master console is available
v For the hardcopy device that the installation specifies as the hardcopy log.
v To receive synchronous messages that bypass regular message queuing

If a console fails or the system issues a synchronous message, MVS can switch to
the first available console in the group.

Planning console recovery by using alternate console groups allows an installation
to define console recovery according to group function. For example, you might
define a group of consoles that display messages about various printers at an
installation. Each console might specify an alternate console group that includes
these consoles so that if a console fails, MVS can switch to one of the functionally
related consoles in the group. In a sysplex, you can define alternate consoles that
reside on different systems as members of an alternate console group, but ensure
that you define the consoles by console name.

Console recovery using alternate console groups is available to MCS consoles,
SMCS consoles, and extended MCS consoles. You use the CONSOLE statement of
CONSOLxx to define the alternate console group for an MCS or SMCS console and
the RACF ADDUSER or ALTUSER command to define an alternate console group
for an extended MCS console.

You cannot specify a single alternate console for an SMCS console; you must
specify an alternate group. It is possible to specify a single console as an alternate
for an MCS or extended MCS console, but using an alternate group provides
greater flexibility in terms of console recovery than using a single alternate console
as backup. IBM recommends that you provide an alternate group as backup for all
consoles.

Recovery Considerations
When you plan console recovery for a system or a sysplex, first consider all the
MCS consoles, SMCS consoles, and extended MCS consoles you have defined for

Chapter 2. Defining Your Console Configuration 43

your console configuration. (For MCS and SMCS consoles, you must consider the
console definitions in CONSOLxx for each system. For extended MCS consoles,
you must consider the TSO/E userids that the RACF or TSO/E administrator defines
for each system.) You should consider backing up each of these consoles.

Also consider the following:
v “Parmlib Members and Console Recovery”
v “Alternate Console Groups and Console Backup”
v “Console Switching and Console Recovery” on page 48
v “Role of the Master Console During Console Recovery” on page 49
v “No-Master-Console Condition” on page 49
v “No-Consoles Condition” on page 50
v “Display of Synchronous Messages” on page 51

Parmlib Members and Console Recovery
You can use the following Parmlib members to define consoles and their alternates:
v CONSOLxx
v CNGRPxx

CONSOLxx allows you

v To define an MCS console and the name of its alternate console group or
alternate console.

v To define an SMCS console and the name of its alternate console group.

v To activate the CNGRPxx member that contains alternate console group
definitions.

v To define a group of MCS consoles to use as the master console when no
full-capability consoles are available.

v To define a group of MCS consoles to handle the display of synchronous
messages.

v To define a group of MCS console devices to back up the hardcopy log.

CNGRPxx allows you to define console groups with MCS consoles, SMCS
consoles, and extended MCS consoles as members.

Alternate Console Groups and Console Backup
You can use the CNGRPxx Parmlib member to specify alternate console groups
whose members can be used as alternate consoles. In CNGRPxx, you define the
group name and the MCS consoles, SMCS consoles or extended MCS consoles
that are members of the group.

During a console switch (when a console fails, for example, or when an operator
issues the SWITCH command to switch to a console’s alternate), MVS searches for
an alternate console based on the order of the console members defined in the
group.

Using CNGRPxx to Define Alternate Console Groups
The GROUP statement of CNGRPxx allows you to define an alternate console
group and its members. On the GROUP statement, you can specify

v The name of the alternate console group.

v The names of the MCS consoles, SMCS consoles, or extended MCS consoles
that serve as candidates in the alternate console group.

44 z/OS V1R3.0 MVS Planning: Operations

You can specify the name of the alternate console group with its console group
members on

v CONSOLE ALTGRP to define alternates for MCS consoles, and SMCS consoles.
(See “Alternate Console Groups and CONSOLxx” on page 46.)

v INIT NOCCGRP to define alternates for the master console. (See
“No-Master-Console Condition” on page 49.)

v DEFAULT SYNCHDEST to define a group of consoles able to display
synchronous messages. (See “Display of Synchronous Messages” on page 51.)

v HARDCOPY HCPYGRP to define alternates for the hardcopy log device

v RACF ADDUSER ALTGRP or ALTUSER ALTGRP commands to define alternates
for an extended MCS console. (ALTGRP is a subkeyword of the OPERPARM
segment that defines attributes for extended MCS consoles.)

When you define group names in CNGRPxx, do not duplicate either the names of
MCS or SMCS consoles defined in CONSOLxx or the console key names specified
for the DISPLAY KEY command.

Activating CNGRPxx
To activate the CNGRPxx member or members at IPL time, use the following
keyword on the INIT statement of CONSOLxx:

CNGRP Specifies the member or members of CNGRPxx that you want
active.

NO indicates that you do not want to specify an alternate console group and is the
default.

You can also activate CNGRPxx members at IPL time by placing the SET CNGRP
command in the COMMNDxx of Parmlib member. Operators can use SET CNGRP
to change the specifications after IPL.

You can activate more than one CNGRPxx member at a time. If you activate two or
more CNGRPxx members for a system or sysplex and define the same group name
in different members, MVS uses the group definition of the first member you specify.

INIT CNGRP has sysplex scope. The first system IPLed into a sysplex defines
alternate console groups for the entire sysplex through the CNGRPxx member
specified on its INIT statement. MVS ignores the INIT CNGRP values of other
systems that subsequently join the sysplex. To change the CNGRPxx member after
IPL, operators can use the SET CNGRP command, which affects all systems in a
sysplex for the life of the IPL.

To display information about the CNGRPxx members in effect for a system or
sysplex, operators can use DISPLAY CNGRP.

Reference
For complete information on CNGRPxx, see z/OS MVS Initialization and
Tuning Reference.

Chapter 2. Defining Your Console Configuration 45

Alternate Console Groups and CONSOLxx
You can specify the group names that you have defined in CNGRPxx for each
console in CONSOLxx. On the CONSOLE statement for the console, use the
following keyword to assign an alternate console group name:

ALTGRP Defines the name of the alternate console group for the console.

If the console fails, MVS can switch to the first available console defined in the
group. MVS searches for the first available console based on the order of the
console members defined for the alternate console group.

For example, the following console group TAPEGR defines three members in
CNGRPxx:
GROUP NAME(TAPEGR)

MEMBERS(TAPE2,TAPE3,EXTAPE)

TAPE2 and TAPE3 are consoles defined in CONSOLxx; EXTAPE is an extended
MCS console defined by RACF.

You define the following CONSOLE statement for TAPE1:
CONSOLE NAME(TAPE1) ALTGRP(TAPEGR)

If TAPE1 fails, MVS first tries to switch to TAPE2, then TAPE3, and finally to
EXTAPE, depending on which console is available. If EXTAPE (the last defined
alternate for TAPE1) is not available, MVS can send action messages, WTOR
messages, or important informational messages destined for TAPE1, to any MCS
console, SMCS console, or extended MCS console with the UD attribute, as well as
the master console. For information about the UD attribute, see “Defining the UD
Attribute for Consoles” on page 107 If the master console is unavailable or no
console in the configuration has the UD attribute, MVS can use the system console.
See “Alternate Console of Last Resort” on page 47.

Changing the Specification of Alternate Console Groups
Operators can use the VARY CN,ALTGRP command to reassign alternate console
groups for MCS consoles, SMCS consoles, and extended MCS consoles.

Changing Console Alternates without Re-IPLing
You can define the same alternate console group name in different CNGRPxx
members and specify different alternate consoles as members of the group. For
example, you can define the group name TAPEGR in CNGRP01 and CNGRP02
(CNGRP01) GROUP NAME(TAPEGR)

MEMBERS(TAPE1, TAPE2)

(CNGRP02) GROUP NAME(TAPEGR)
MEMBERS(TAPE3, TAPE4)

When you define alternate groups in CONSOLxx, you can specify the alternate
console group name TAPEGR. If CNGRP01 is active and you want to change the
alternate console specifications to those in CNGRP02, the operator can issue SET
CNGRP02 to change the alternates without having to re-IPL the system.

Alternate Console Groups and Extended MCS Consoles
To define alternate console groups for extended MCS consoles, your RACF security
administrator can use the RACF ADDUSER ALTGRP command or change
specifications using the RACF ALTUSER ALTGRP command. For an example of

46 z/OS V1R3.0 MVS Planning: Operations

how to use these commands to define extended MCS consoles and their attributes,
see “Controlling Extended MCS Consoles Using RACF” on page 152.

Using the ALTERNATE Keyword on the CONSOLE Statement
If you want to specify a single alternate for a console, you can use the following
keyword on the CONSOLE statement:

ALTERNATE Defines the console name or device number of another MCS
console to act as backup

Note, however, that ALTERNATE is not the recommended way to define backup
consoles; console groups and the ALTGRP keyword provide more flexible recovery.
You can define separate console statements using ALTERNATE and ALTGRP in the
same CONSOLxx parmlib member:
CONSOLE . . . NAME(DISK) ALTERNATE(DISK2)

CONSOLE . . . NAME(TAPE1) ALTGRP(TAPEGR)

You cannot specify an extended MCS console on ALTERNATE. You can specify an
MCS console or an SMCS console on ALTERNATE for an MCS console. You
cannot specify ALTERNATE for an SMCS console.

If you specify ALTERNATE, MVS switches only to the console specified if it is
available; MVS does not recognize console chaining through the use of the
ALTERNATE keyword.

Note: In the examples that follow, the required CONSOLE keyword DEVNUM has
been omitted.

For example, if you specify this:
CONSOLE . . . NAME(TAPE) ALTERNATE(DISK1)

CONSOLE . . . NAME(DISK1) ALTERNATE(DISK2)

CONSOLE . . . NAME(DISK2) ALTGRP(DISKGR)

and TAPE fails, MVS tries to switch to DISK1. If DISK1 is not available, MVS does
NOT try to switch to DISK2. The following chart summarizes how ALTERNATE and
ALTGRP work in this example.

Table 9. Console Switching Using the ALTERNATE or ALTGRP keyword

Console Alternate console or group Event

TAPE ALTERNATE(DISK1) If TAPE fails, switches to DISK1.
If DISK1 fails, does not switch.

DISK1 ALTERNATE(DISK2) If DISK1 fails, switches to DISK2.
If DISK2 fails, does not switch.

DISK2 ALTGRP(DISKGR) If DISK2 fails, switches to first member of
DISKGR. If that member fails, switches to
next member of DISKGR, and so forth. If
the last member specified in the group fails,
does not switch.

Alternate Console of Last Resort
If the console on ALTERNATE is not available, or none of the consoles specified for
ALTGRP is available, MVS uses

Chapter 2. Defining Your Console Configuration 47

v Any console with the UD attribute (including the master console by default) to
send action messages, WTOR messages, or important informational messages
destined for the failing console. “Defining the UD Attribute for Consoles” on
page 107 describes assigning the UD attribute to a console.

v The system console to send undelivered messages when no other console with
the UD attribute is available.

Console Switching and Console Recovery
When the system switches a failing console to an alternate (or when an operator
switches a console as a result of the SWITCH command), MVS merges the
following console attributes with those of the alternate:
v Routing codes (ROUTCODE)
v Message levels (LEVEL)
v Command authority of MCS consoles and SMCS consoles (AUTH)
v Message scope in a sysplex (MSCOPE)
v Ability for the console to receive undelivered messages (UD)

Console switching occurs for MCS consoles, SMCS consoles, and extended MCS
consoles.

Note that the attributes are added to those of the alternate console and do not
replace the existing attributes. Thus, the command authority, message scope, and
UD status of the alternate console are not permanently affected by the addition of
the failing console’s attributes.

The following example illustrates how console switching works with routing codes. If
console TAPE1 with routing codes 1, 2, and 7 switches to its alternate console
TAPE2, MVS merges the routing codes of TAPE1 with those of TAPE2 and
redirects TAPE1’s messages to TAPE2. If TAPE2 has routing codes 7-10, the
following routing codes are in effect for TAPE2 after the switch:
TAPE2 ROUTCODE(1,2,7-10)

When an operator reactivates the console (TAPE1 in this example), MVS restores
the console attributes of TAPE1 and removes TAPE1’s attributes from TAPE2.
TAPE1 ROUTCODE(1,2,7)

TAPE2 ROUTCODE(7-10)

In a sysplex, if a system with attached consoles fails, MVS can switch the attributes
of the failed consoles (including extended MCS consoles) to consoles on an active
system.

Note: In a JES3 complex, JES3 can make use of the dynamic system interchange
(DSI) function to ensure that messages destined for a console on a failing
system are redirected to an active system. See z/OS JES3 Initialization and
Tuning Guide.

The SWITCH CN Command
Operators can use the SWITCH CN command to switch console attributes between
consoles. Using the switch command might be useful
v To handle message traffic during changes to operator shifts
v To redistribute operator workload by rerouting messages

Consoles can be MCS consoles, SMCS consoles, or extended MCS consoles. The
operator can use SWITCH to do the following:

48 z/OS V1R3.0 MVS Planning: Operations

v Switch the console attributes of an active or inactive console to another console.

v Switch the console attributes of an active or inactive console to its first available
alternate in the alternate console group or the console specified on ALTERNATE.

v Restore the console attributes of an inactive console that has switched to an
active alternate.

When an operator uses the SWITCH command to switch from an MCS or SMCS
console to another console or its alternate, MVS first merges the console attributes
with the other console and then deactivates the switched console.

Operators cannot use the SWITCH CN command to switch the master console, the
hardcopy log device, or the system console.

Note:

To switch the console attributes of an inactive extended MCS console, it is
the responsibility of the program that displays messages for an extended
MCS console session to first deactivate the console session using the
MCSOPER DEACTIVATE macro. For information on MCSOPER, see z/OS
MVS Programming: Authorized Assembler Services Guide.

Reference
z/OS MVS System Commands describes the full syntax and use of the
SWITCH command.

Console Recovery and the RESET CN Command
If a problem occurs that causes a console to become unusable and attempts to
restore the console fail (for example, in response to the VARY command, the
system issues message IEE339I indicating that the console is changing status), the
operator does not have to re-IPL the system to recover the console. From another
console, the operator can first issue the RESET CN command and then either issue
the VARY CN,ONLINE command for the inactive console, or, if the inaction console
is an SMCS console, log the console on again.

For information on using RESET CN, see z/OS MVS System Commands.

Role of the Master Console During Console Recovery
The master console is a full-capability console from which the operator has the
authority to enter any MVS commands. As a result, the master console is often the
focal point of MVS operations. In a system or sysplex, the master console becomes
the alternate for any console without a defined alternate or alternate console group.

No-Master-Console Condition
If the master console fails and is unable to switch, a no-master-console condition
exists. If the master console fails, you should restore the master console as soon
as possible.

If there are no active alternates for the master console but other full-capability
consoles are active in the system or sysplex, the operator can issue VARY
MSTCONS on one of the consoles. VARY MSTCONS allows an active full-capability
console to become the master console.

Chapter 2. Defining Your Console Configuration 49

In a no-master-consoles condition, the system accepts the VARY MSTCONS
command from any console. Thus, any MCS or SMCS console that is not a
MASTER authority console can issue the VARY MSTCONS command to make itself
the master console unless the installation has used RACF to prevent the console
from making itself the master console. IBM strongly recommends that you use
RACF to prevent any user that should not be allowed to have access to the master
console from issuing the VARY MSTCONS command. Provide an
MVS.VARY.MSTCONS profile in the OPERCMDS class and ensure that the user
does not have READ or greater authority. Note that if you do not require operator
LOGON, it is extremely difficult, if not impossible, to control authorization.

If the master console failed due to a system partition, bringing the failing system
back into the sysplex will also relieve the no-master-console condition.

No-Consoles Condition
If no full-capability consoles are active in a system or sysplex, a no-consoles
condition exists. For a no-consoles condition, the operator can:

v Issue VARY CN(),ONLINE (from an extended MCS or subsystem console) to
activate a full-capability console that is offline and make it the master.

v Issue CONTROL V,USE=FC (from an extended MCS or subsystem console) to
change an active message stream or status display MCS console to a
full-capability MCS console and make it the master.

v Press the attention interrupt key on an MCS console device that is to become the
master console, then press the external interrupt key on the system console to
activate the device as the master console.

v In a sysplex, an operator can use the system console to IPL a system with a
full-capability console (defined with AUTH=MASTER) into the sysplex.

v Activate an SMCS console to relieve the no-consoles condition. If the console
was defined AUTH=MASTER, it will become the master console. Otherwise, it
will not become the master console, and the system or sysplex will enter a
no-master-console condition as described in “No-Master-Console Condition” on
page 49. In a no-master-console condition, the operator using the console can
make the console the master console using the VARY MSTCONS command,
unless the installation takes steps to prevent it as described in
“No-Master-Console Condition” on page 49.

Selecting a Master Console Using Alternate Console Groups
When no full-capability consoles are available in a system or sysplex, an operator
can select an MCS console from an alternate console group specified on the INIT
statement and activate it as the master console. When the operator presses the
attention interrupt key on any MCS console device that is a member of the alternate
console group and then presses the external interrupt key of the system console,
MVS can activate the MCS console as the master console. You cannot select an
SMCS console by pressing the ATTN key. Pressing the external interrupt key while
the master console is an SMCS console causes the console to switch to its
alternate.

Use the following keyword on the INIT statement to specify a master console group:

NOCCGRP Specifies the name of the alternate console group defined in
CNGRPxx from whose members the system or sysplex can select a
master console during a no consoles condition.

50 z/OS V1R3.0 MVS Planning: Operations

In a system or sysplex, the group specified on NOCCGRP must be defined in an
active CNGRPxx member.

Console members in the group should be defined as full-capability MCS consoles.
In a sysplex, the master console that an operator selects and the system console
that the operator uses to activate the console must be attached to the same
system.

Devices defined as master console alternates on INIT NOCCGRP allow MVS to
select only the MCS console devices specified. Thus, when a no-consoles condition
occurs, subsystem consoles like NetView are not affected and the subsystems can
continue to use the consoles.

Display of Synchronous Messages
Synchronous messages are WTO or WTOR messages that can be issued during
initialization or recovery situations, or by programs that want messages to bypass
normal message queuing. In a sysplex, a console can display a synchronous
message only if it is attached to the system that issues the message.

You can define the MCS master console, the system console, or other MCS
consoles as members of an alternate console group in CNGRPxx to receive
synchronous messages.

Note: You cannot define an SMCS console to receive synchronous messages.

Use the following keyword on the DEFAULT statement of CONSOLxx, to handle the
display of a synchronous message:

SYNCHDEST Specifies the name of the alternate console group whose members
can receive a synchronous message.

MVS searches for an eligible console based on the order of the console members
specified in the group. You can specify valid MCS console names as members of
the group. You can also specify *MSTCON*, the master console in the system or
sysplex, or *SYSCON*, the system console. To receive the synchronous message,
the console must be attached to the system that issues the message.

Considerations Using Consoles to Display Synchronous
Messages
If you do not specify an alternate console group on SYNCHDEST or none of the
consoles on SYNCHDEST are active, the system that issues the message tries to
select the following console:

1. The master console, if it is not an SMCS console but is active and physically
attached to the system that issues the message; otherwise,

2. The system console on the system that issues a wait-state message or WTOR
message; normally MVS tries to display only WTOR messages on the system
console.

For a sysplex environment, you should understand and plan where your
synchronous messages will be displayed.

Synchronous messages can be displayed only on the system where they originated.
They can be displayed on any MCS console attached to the system, but you must
specify the console(s) to be used, in the SYNCHDEST console group. Systems with
no attached MCS consoles will use the system console for these messages.

Chapter 2. Defining Your Console Configuration 51

The SYNCHDEST console group is an ordered list of consoles where MVS is to
attempt to display synchronous messages. The system console can be specified in
the list. If an MCS console in the list is not attached to the system where the
message is issued, it is skipped. So, the same SYNCHDEST group can be used for
all systems, if you wish. If a console in the list is an SMCS console, it is skipped,
and *MSTCON* is ignored if the master console is an SMCS console.

If the system attempts to use a console for a synchronous message and fails, the
next console in the SYNCHDEST group, which is attached to this system, will be
used. The system console can be specified in the group, and will also be used as a
last resort, if all other console attempts have failed.

If MCS consoles share a control unit and an operator tries to respond to a
synchronous message on one of the consoles, interruptions from the other consoles
can make it impossible for the operator to reply to a synchronous message. When
you plan your sysplex recovery, you should attach the MCS console that is to
display synchronous messages to its own control unit without any other attached
console. If it shares a control unit, there is a higher probability of failure on the
console; the message will then be attempted on the next suitable console in the
SYNCHDEST group, or on the system console.

Planning Console Security
Console security means controlling which commands operators can enter on their
consoles to monitor and control MVS. How you define command authorities for your
consoles or control logon for operators allows you to plan the operations security of
your MVS system or sysplex. In a sysplex, because an operator on one system can
enter commands that affect the processing on another system, your security
measures become more complicated and you need to plan accordingly.

If your installation plans to use extended MCS consoles, you should consider ways
to control what an authorized TSO/E user can do during a console session.
Because an extended MCS console can be associated with a TSO/E userid and not
a physical console, you might want to use RACF to limit not only the MVS
commands a user can enter but from which TSO/E terminals the user can enter the
commands.

You can control whether an operator can enter commands from a console:
v Through the AUTH keyword on the CONSOLE statement of CONSOLxx
v Through the LOGON keyword of the DEFAULT statement and RACF commands

and profiles.

“Controlling Command Authority with the AUTH Attribute” describes the AUTH
attribute and command groups. “Using RACF to Control Command Authority and
Operator Logon” on page 54 describes RACF and the LOGON keyword for the
DEFAULT statement. Special security considerations for SMCS consoles appear in
“Providing Security for SMCS Consoles” on page 34.

Controlling Command Authority with the AUTH Attribute
The AUTH keyword on the CONSOLE statement of CONSOLxx allows you to
control the command authority of your full-capability consoles so that the system
accepts commands defined by command group that you assign for the console. For
example, consoles with master authority need to issue all commands, including
those that affect other consoles (including extended MCS consoles). On the other
hand, a console used only to issue I/O commands, such as PURGE, MOUNT, and

52 z/OS V1R3.0 MVS Planning: Operations

UNLOAD, needs the authority to issue only certain commands. For this reason,
MVS commands are grouped into system command groups that allow you to control
which commands operators can issue from any given console.

MVS commands are assigned to one of five command groups according to
command function. The command groups are:
v Informational commands (INFO)
v System control commands (SYS)
v I/O control commands (IO)
v Console control commands (CONS)
v Master console commands (MASTER)

For a list of the commands in each group see system command group information
in z/OS MVS System Commands. (For information about JES2 commands, see
z/OS JES2 Commands or z/OS JES3 Commands.)

To authorize which of the command groups an operator can enter on an MCS or
SMCS console, use the following keyword on the CONSOLE statement.

AUTH Defines the command authority for an MCS or SMCS console

Options you can specify for AUTH include the following:

MASTER Specifies that the console has master authority. You can enter all
MVS operator commands from the master console.

INFO Specifies that the console can issue any informational commands
and is the default value

SYS Specifies that the console can issue system control commands and
informational commands

IO Specifies that the console can issue I/O control commands and
informational commands

CONS Specifies that the console can issue console control commands and
informational commands

ALL Specifies that the console can issue informational, system control,
I/O control, and console control commands

Operators can use the VARY CN command to change AUTH.

An operator can enter informational commands from any full-capability console. You
can specify any combination of SYS, IO, and CONS together on the AUTH keyword
so that an operator can enter these commands (along with informational
commands) from the console. If an operator enters a command at a console where
it is not authorized, MVS rejects the command and sends an error message to the
issuing console.

Because consoles can receive messages based on assigned routing codes and
message levels, ensure that the console has the proper authority for the operator to
be able to respond to the message. For a description of message routing codes
and levels, see “Message and Command Routing” on page 96.

Assigning a Console Master Authority
By assigning the system command groups for a console in a system, you can
establish a console with master authority.

Chapter 2. Defining Your Console Configuration 53

For example, to assign master authority to a console named MSTR (device number
031), code the following CONSOLE statement in CONSOLxx:
CONSOLE DEVNUM(031) NAME(MSTR) AUTH(MASTER)

If no console is defined with master authority in the system, the first full-capability
MCS console will be made to have master authority.

In a sysplex, the first active console with master authority in the first system that
joins the sysplex becomes the master console. You can define AUTH(MASTER) for
other consoles in that system or for other systems that subsequently join the
sysplex. These consoles have master authority, but there can be only one master
console in the sysplex.

In a sysplex with only SMCS consoles, the first active console with MASTER
authority becomes the master console. Because it is impossible to know which
console will activate first, any console that should not be the sysplex master should
not have MASTER authority.

Operators can assign the master authority of a console by using the following
command:
VARY CN(name),AUTH=MASTER

This command authorizes the console with master authority and establishes the
commands that the console can receive. If a console with master authority is
operating properly, an operator can switch to another console without disrupting
normal operations. The operator must enter these commands through the console
currently defined with master authority. The effect of the VARY command lasts only
for the duration of the IPL.

Using RACF to Control Command Authority and Operator Logon
CONSOLxx provides a way to limit command authority for MCS and SMCS
consoles. However, to control operator logon, limit the use of specific commands to
specific MCS and SMCS consoles, or control command use for extended MCS
consoles, your RACF security administrator can help you plan your console
security. When you use RACF, you need to educate operators about the security
policy at the installation and the changes to their jobs that the security policy
requires.

An installation can audit the use of commands and limit the use of commands by
operator as well as by console:

v Based on the identity of the issuer of the command — who issued the command.
Using this method, the installation can verify that the operator who issues a
command is authorized to do so and optionally produce audit records that log
command activity. The installation can control who can issue what commands at
several different levels. For example, all operators might be allowed to issue all
commands, some operators might be allowed to enter only a subset of the
allowable commands, or some commands might be restricted to just one or two
individual operators.

v Based on the MCS console device number or the console name used to enter
the command — where the command was issued. Using this method, the
installation can verify that the command has been issued from a console that is
authorized to issue the command and optionally produce audit records that log
command activity.

54 z/OS V1R3.0 MVS Planning: Operations

v Based on both the identity of the command issuer and the console device
number or console name used to enter the command — both who issued the
command and where the command was issued. Using this method, the
installation can verify that the operator who issues a command is authorized to
do so and that the command has been issued from a console that is authorized
to issue the command. Audit records can log command activity.

Your installation can use RACF and CONSOLxx to provide restrictions on the use of
system commands to meet the security policy at your installation. If console
definition (through the AUTH keyword) provides adequate control of command use,
you need take no action. Simply ensure that the LOGON parameter on the
CONSOLE or DEFAULT statement in the CONSOLxx Parmlib member is set to
OPTIONAL, which is the default.

Using RACF to Authorize Console Operators and Command Use
If your installation requires additional security controls on the use of system
commands, you must first determine what controls are required. For example, do
you want to require all your operators to logon to MCS or SMCS consoles, or do
you want certain operators with special authority to be able to enter commands that
require a higher authority than the console allows? Do you want to audit logon
activity? If so, do you want to log all command activity or only unauthorized, or
unsuccessful, attempts to issue system commands? Using RACF and the LOGON
keyword in CONSOLxx can help you achieve the kind of added security you might
need.

If your installation uses SMCS consoles, IBM strongly recommends that you use
RACF to prevent an SMCS console from making itself the master console. That is,
provide an MVS.VARY.MSTCONS profile in the OPERCMDS class and ensure the
user does not have READ or greater authority. Note that, if you do not require
operator LOGON, it is extremely difficult, if not impossible, to control authorization.

If your installation uses extended MCS consoles, you need to plan for their security.
Your TSO or RACF security administrator can help you authorize TSO/E users and
control the console attributes (defined in the OPERPARM segment) for those users.
For examples, see “Controlling Extended MCS Consoles Using RACF” on
page 152.

Note that using RACF to authorize commands can increase the path length the
system requires to process a command, and auditing command activity can
increase the number of security-related SMF records your system generates.

Defining RACF Profiles
To determine whether a particular user (an operator) is allowed to access a
particular resource (a command or a console), RACF uses the RACF profiles. The
security administrator can define a RACF profile for:
v Each user of a console
v Each console that is to be automatically logged on
v Each MVS command issued from a console
v Each user of the SMCS application is able to enter a command.

SMCS will support the protecting of the SMCS application via the APPL class of a
security product. If the user is defined and authorized by the security product and
the APPL class is not active or the APPL class is active but no profile matches the
SMCS APPLID, access will be granted. If the APPL class is active and a profile
matching the SMCS APPLID exists, the name the user is logging on with must be

Chapter 2. Defining Your Console Configuration 55

defined in the profile’s access list with at least READ authority for access to be
granted. If the console has been defined with LOGON(AUTO), the console name
must be in the access list.

Using RACF to authorize commands means that each operator requires an
individual user profile. (TSO/E users of extended MCS consoles should already
have a RACF profile in order for them to log on to TSO.) This user profile
establishes the userid of the individual operator, and the userid identifies the
operator when the operator logs on to the system. You can define the operator’s or
TSO/E user’s authority to access resources by userid, but you can also establish
access authority through a RACF group. For example, if you have several operators
or TSO/E users with identical access requirements, you can have the security
administrator create a RACF group and define the access for the individual
operators or TSO/E users through the group. For more information, see “Defining
Users with RACF” on page 57.

If you want an MCS console to be automatically logged on when you specify
LOGON(AUTO), you must ensure that each console has a user profile established
for it. Your RACF security administrator can define a user profile by console name.
When LOGON(AUTO) is in effect, the console is automatically logged on when it is
activated. For more information, see “Automatic LOGON” on page 60.

Resources, such as commands, MCS or SMCS consoles, and TSO terminals, also
require RACF profiles. These profiles establish the access requirements for the
resource — such as who can issue the command or use the console or terminal —
and the level of security auditing your installation requires. For example, you might
need to audit all uses of commands or want to audit only unauthorized uses of
commands. For specific information, see “Defining Commands with RACF” on
page 57 and “Defining Consoles with RACF” on page 59. For an example of
defining a TSO/E terminal as a resource, see “Controlling Extended MCS Consoles
Using RACF” on page 152.

You need to work with the RACF security administrator to set up the RACF profiles
and options to implement your installation’s security goals. z/OS Security Server
RACF Security Administrator’s Guide includes RACF-related information about
securing access to system commands and consoles.

RACF Access Authorities
In RACF profiles that protect resources, the MCS authority “translates” to a RACF
access authority. This RACF access authority is specified for a user or console in
an access list of the resource profile and determines the command authority of the
user or console.

MCS Authority RACF Access Authority

MASTER CONTROL

ALL(SYS,IO,CONS) UPDATE

INFO READ

These access authorities are the same for extended MCS console users. The
security administrator can define resource profiles for MCS, SMCS and extended
MCS consoles using RACF commands. (See “Controlling Extended MCS Consoles
Using RACF” on page 152.)

56 z/OS V1R3.0 MVS Planning: Operations

Defining Users with RACF
Your installation’s security policy determines how you define the operators, MCS
consoles, or SMCS consoles for automatic logon. If your installation’s security policy
requires you to audit all operator commands according to the identity of the user,
then all operators as individual users must be defined. If your installation uses the
LOGON(AUTO) option in CONSOLxx to automatically log on MCS and SMCS
consoles when they are activated, you must ensure that a user profile exists for
each console to be logged on.

You can also grant access to commands to groups of operators. A RACF group
defines a set of related individuals who have similar security requirements. Defining
access authority by group minimizes changes to the RACF profiles when individual
users change job responsibilities or leave a particular job.

To create profiles for operators, the RACF security administrator needs to know
v Who the operators are
v Which operators fall into groups with identical access requirements.

To create profiles for consoles to be automatically logged on, the RACF security
administrator needs to know the names of the consoles defined in CONSOLxx.

Changes made to the access authority while a system is running may not take
effect until the security data for the console(s) is reset in MVS. This occurs during
LOGON for MCS or SMCS consoles and during MCSOPER ACTIVATE for EMCS
consoles. For instance, if an active user is connected to a new group, the user must
log off and then log back on again to have the authority associated with that new
group.

Defining TSO/E Users of Extended MCS Consoles with RACF
Your TSO or RACF security administrator should define user profiles for all TSO/E
users of extended MCS consoles. TSO/E logon can be controlled through TSO/E or
RACF, and like operators, you can define TSO/E users by individual or group
profiles. Your installation authorizes the TSO/E user to be able to issue the TSO/E
CONSOLE command. This command initiates an extended MCS console session.
For an example of how to define a TSO/E user to initiate an extended MCS
console, see “Controlling Extended MCS Consoles Using RACF” on page 152.

Defining Commands with RACF
Your installation’s security policy determines which commands you must protect. A
RACF profile for the command in the OPERCMDS class protects the command.
When an operator logs on to a console and issues an MVS command that requires
a higher authority than the console allows, RACF can check the access list of the
command profile to determine if the user is authorized to issue the command.

To link the command the operator issues with the profile that protects the command,
MVS provides a construct, or structure, called a resource-name for each command.

The resource-name for an MVS command has the following parts:
MVS.command.command-qualifier.command object

where:

MVS
Is the high-level qualifier that defines the command as a system command.
MVS is a required part of the resource-name. Subsystem commands use a
different high-level qualifier, such as JES2 or JES3.

Chapter 2. Defining Your Console Configuration 57

command
Specifies the command or a specific variation of the command. To protect an
individual command, this part of the resource-name is required. It also allows
you to control significant variations of a command separately. For example,
FORCE without the ARM operand has a different effect than does FORCE with
the ARM operand; you can thus specify either FORCE or FORCEARM to
control the two uses separately.

command-qualifier
Specifies a subfunction of the command. This part of the resource-name is
optional. It allows you to protect specific command subfunctions separately. For
example, the following resource-name protects all functions of the TRACE
command:
MVS.TRACE.**

In contrast, the following resource-names protect each function of the TRACE
command separately:
MVS.TRACE.ST
MVS.TRACE.MT
MVS.TRACE.CT
MVS.TRACE.STATUS

command-object
Specifies the object or target of the command. This part of the resource-name
is optional. Examples of objects or targets include:

The device on a CANCEL command
The jobname on a MODIFY command
The membername on a START command

Table 10 on page 62 defines the MVS commands and their corresponding
resource-names. It also shows the RACF access authority associated with each
command. To define resource profiles for system commands, the RACF security
administrator can use the resource-names exactly as shown in Table 10 on
page 62, or replace the optional fields with asterisks or, for command-object,
specific values. In the command profile, the security administrator also defines the
auditing requirements and the users or groups allowed to issue the command in the
profile’s access list.

When an operator issues an MVS command with a RACF profile, MVS determines
the resource-name that matches the command and passes that resource-name to
RACF. RACF uses the resource-name to locate the profile for the command and
verifies that the operator is allowed to issue the command by checking the access
list in the profile. If RACF authorizes the access, MVS processes the command; if
RACF denies the access, MVS rejects the command. If your installation has
user-written commands that you must protect, use the CMDAUTH macro; see z/OS
MVS Programming: Authorized Assembler Services Guide and z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN.

To create profiles for MVS system commands that you do not have to change
frequently, it is a good idea to end each name with two asterisks, which indicate
that the profile protects all commands that match the specified portion of the
resource-name, regardless of whether there are additional qualifiers or how many
additional qualifiers there are. For example, use:

MVS.SET.**

to protect all SET commands with a single profile.

58 z/OS V1R3.0 MVS Planning: Operations

Defining Consoles with RACF
You can use a RACF profile in the CONSOLE class to determine which userids are
authorized to log on to a particular console. The commands in the following
example define a RACF profile for console CON1 and authorize userid CONSID1 to
log on to that console.
RDEF CONSOLE CON1 UACC(NONE)
PERMIT CON1 CLASS(CONSOLE) ID(CONSID1) ACCESS(READ)
SETROPTS CLASSACT(CONSOLE)

Setting DEFAULT LOGON Requirements for MCS and SMCS
Consoles
Once you have established the RACF profiles your installation requires, you use the
LOGON keyword on the DEFAULT statement in CONSOLxx to establish your MCS
console operator LOGON requirements. You can:

v Have the system automatically log each console on as the console is activated.
Operators can log on but are not required to do so. See “Automatic LOGON” on
page 60.

v Require each operator to log on to the system before issuing commands. See
“Required LOGON” on page 61.

v Allow MCS console command authorization to control access to commands. See
“Optional LOGON” on page 61.

To control how operators can log on to MCS consoles, use the following keyword
on the DEFAULT statement in CONSOLxx:

LOGON Controls the logon for operators of MCS or SMCS consoles

Options you can specify for LOGON are as follows:

AUTO Specifies that the console is automatically logged on by its console
name. In addition, operators can optionally log on to the console.

REQUIRED Specifies that operators must log on before the system allows them
to enter commands. If a system includes SMCS consoles,
LOGON(REQUIRED) is recommended.

OPTIONAL Specifies that operators can optionally log on to the console;
otherwise, MCS console authority is in effect.

The LOGON keyword affects only full-capability display consoles.

It does not prevent the operator from receiving synchronous messages. Regardless
of the LOGON value set on the DEFAULT statement, individual consoles can
override the value. For more information, see “Setting LOGON Requirements for
Individual MCS or SMCS Consoles”.

Setting LOGON Requirements for Individual MCS or SMCS
Consoles
With z/OS, the LOGON keyword on the CONSOLE statement in CONSOLxx can
override the system console LOGON default on the DEFAULT statement.

To control how operators can log on to specific MCS or SMCS consoles, specify the
following keywords on the CONSOLE statement in CONSOLExx:

LOGON Controls the logon for operators of MCS and SMCS consoles

Options you can specify for LOGON are as follows:

AUTO Specifies that the console is automatically logged on.

Chapter 2. Defining Your Console Configuration 59

REQUIRED Specifies that the console must be logged on before commands
can be issued.

OPTIONAL Specifies that the console does not need to be logged on.

DEFAULT Specifies that the console is to use the LOGON value on the
DEFAULT statement. If you specify DEFAULT and the DEFAULT
statement does not contain a LOGON value, the system issues an
error message and uses LOGON(OPTIONAL) for an MCS console
and LOGON(REQUIRED) for SMCS.

For an SMCS console, see “Defining SMCS Consoles” on page 31.

Automatic LOGON
To control and audit command activity by console, specify LOGON (AUTO). When
LOGON (AUTO) is in effect and RACF is active, the system automatically issues a
LOGON for each MCS or SMCS console as the console is activated. The automatic
LOGON uses the console name as the logon userid.

To ensure that the console is automatically logged on, the security administrator
must define a user profile for each console by console name.

Your installation must define the name of the system console as a valid USERID to
RACF. IBM recommends that if you plan to use LOGON (AUTO) for your
installation, you define the system console in CONSOLxx and do not use the
system default name as the name of the system console.

To define access requirements for the console, the security administrator defines a
resource profile for the console in the RACF CONSOLE class. The CONSOLE
class must be active when console resource profiles are used.

When automatic LOGON is in effect, operators can log on to the system but are not
required to do so. The system issues an automatic LOGON for the console
whenever RACF is active and the following conditions occur:

v The console is activated either during system initialization, as a result of the
VARY command or if an SMCS console is logged on.

v The console is switched from message-stream or status display mode to full
capability mode.

v An operator who had logged on issues the LOGOFF command.

Once the console is logged on, operators can use it to issue commands at the level
defined for the userid. This could be the level defined in the OPERCMDS class for
the userid, or lacking an OPERCMDS definition matching the command, the
authority of the console (originally defined in CONSOLxx). If you have some
consoles, perhaps those not in secure areas, that you want to require LOGONs,
LOGON (AUTO) and RACF profiles allow you to control operator logon. If an
operator wishes to issue a command requiring a higher level of authorization, and
the operator (through RACF checking of OPERCMDS profiles) has the required
level of authorization, the operator must log on to the console to be able to issue
the command successfully. The operator authority (defined in the OPERCMDS
class) then replaces the console authority. When the operator logs off, the system
automatically issues the LOGON for the console name, thus reverting back to the
original console authority.

When using LOGON(AUTO), you should ensure that at least one operator is logged
on with master authority to be able to communicate with the system.

60 z/OS V1R3.0 MVS Planning: Operations

Required LOGON
To audit all command activity by operator userid or to control which commands
individual operators may issue, specify LOGON(REQUIRED) on either the
CONSOLE statement or the DEFAULT statement. Specifying LOGON(REQUIRED)
is especially important for SMCS consoles. Before setting LOGON(REQUIRED),
your installation must define RACF profiles for all operators and for the commands
and consoles you want to protect. When protecting commands and consoles with
RACF resource profiles, both the OPERCMDS and CONSOLE class must be
active. Also, before setting LOGON(REQUIRED), your installation must define the
name of the system console as a valid USERID to RACF. IBM recommends that, if
you plan to use LOGON(REQUIRED) for your installation, you define the system
console in CONSOLxx and do not use the system default name as the name of the
system console.

When LOGON(REQUIRED) is in effect, all operators must log on before issuing
commands, and your installation can limit the commands they can issue. If an
operator tries to issue a command without logging on, the system rejects the
command and issues a message. The system also rejects any command the
operator is not authorized to issue. To change LOGON(REQUIRED) on the
DEFAULT statement, you must re-IPL the system. You can use the VARY CN
command to change LOGON(REQUIRED) on the CONSOLE statement.

During system initialization, the system accepts commands only from the master
console (or the system console) until RACF is fully initialized and able to process
LOGON requests, with one exception. If there is no master console present in the
system before RACF is initialized, the system accepts the VARY MSTCONS
command from any full-capability console to establish a master console. Allowing
commands from the master console before RACF is fully initialized allows an
operator to intervene if required to complete RACF initialization.

Once RACF is initialized, the LOGON prompt appears on all MCS display consoles.
The LOGON prompt requires the operator to log on by supplying at least a userid
and password. The LOGON prompt also appears:

v When a console changes from status display or message stream to full capability

v When the console is brought on line by a VARY command

v When an SMCS console is activated

v When the current operator logs off

When LOGON(REQUIRED) is in effect, no operator should leave the console
unattended without first issuing the LOGOFF command. Issuing LOGOFF leaves
the console in a secure, unattended state. For an MCS console, messages continue
to appear on the console, but the system does not accept any command from that
console until an operator logs on to the console. For SMCS consoles, the console
session is terminated.

When using LOGON(REQUIRED), you should also ensure that at least one
operator is logged on with master authority to be able to communicate with the
system.

Optional LOGON
If you do not need special command auditing, you can specify LOGON(OPTIONAL).
LOGON(OPTIONAL) allows console command authorization (defined by AUTH on
the CONSOLE statement) to determine whether the system is to accept the
command being issued on the console.

Chapter 2. Defining Your Console Configuration 61

MVS Commands, RACF Access Authorities, and Resource Names
Table 10 lists all MVS commands, the RACF access authority associated with them,
the RACF resource name for the profile, and any explanatory notes:

Table 10. MVS Commands, RACF Access Authorities, and Resource Names

Command/Keyword Authority Resource-Name

ACTIVATE UPDATE MVS.ACTIVATE

CANCEL device UPDATE MVS.CANCEL.DEV.device

CANCEL jobname UPDATE MVS.CANCEL.JOB.jobname

The previous command is for a job that is not a started task.

CANCEL jobname.id
CANCEL id

UPDATE MVS.CANCEL.STC.mbrname.id

The previous command is for a started task for which an identifier is provided.

CANCEL jobname UPDATE MVS.CANCEL.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.

CANCEL jobname UPDATE MVS.CANCEL.ATX.jobname

The previous command is for APPC transaction programs.

CANCEL U=userid UPDATE MVS.CANCEL.TSU.userid

CHNGDUMP UPDATE MVS.CHNGDUMP

CMDS DISPLAY READ MVS.CMDS.DISPLAY

CMDS SHOW READ MVS.CMDS.SHOW

CMDS REMOVE CONTROL MVS.CMDS.REMOVE

CMDS ABEND CONTROL MVS.CMDS.ABEND

CONFIG CONTROL MVS.CONFIG

CONTROL A READ MVS.CONTROL.A

Note: For CONTROL A, the access authority for all CONTROL commands except CONTROL M is normally READ,
but the L=cc (console id) or L=name (console name) operand can change the access level. When L=cc or L=name
specifies a console that is not full-capability and is not the issuing console, the access authority is UPDATE. When
L=cc or L=name specifies a console that is full-capability and is not the issuing console, the access authority is
CONTROL.

For Control C, D, E, N, Q, S, T and V, see Control A.

CONTROL C READ MVS.CONTROL.C

CONTROL D READ MVS.CONTROL.D

CONTROL E READ MVS.CONTROL.E

CONTROL M CONTROL MVS.CONTROL.M

CONTROL N READ MVS.CONTROL.N

CONTROL Q READ MVS.CONTROL.Q

CONTROL S READ MVS.CONTROL.S

CONTROL T READ MVS.CONTROL.T

CONTROL V READ MVS.CONTROL.V

DEVSERV READ MVS.DEVSERV

DISPLAY A READ MVS.DISPLAY.JOB

DISPLAY APPC READ MVS.DISPLAY.APPC

62 z/OS V1R3.0 MVS Planning: Operations

|

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

DISPLAY ASCH READ MVS.DISPLAY.ASCH

DISPLAY ASM READ MVS.DISPLAY.ASM

DISPLAY CNGRP READ MVS.DISPLAY.CNGRP

DISPLAY CONSOLES READ MVS.DISPLAY.CONSOLES

DISPLAY DMN READ MVS.DISPLAY.DMN

DISPLAY DLF READ MVS.DISPLAY.DLF

DISPLAY DUMP READ MVS.DISPLAY.DUMP

DISPLAY EMCS READ MVS.DISPLAY.EMCS

DISPLAY ETR READ MVS.DISPLAY.ETR

DISPLAY GRS READ MVS.DISPLAY.GRS

DISPLAY IOS READ MVS.DISPLAY.IOS

DISPLAY IPLINFO READ MVS.DISPLAY.IPLINFO

DISPLAY JOBS READ MVS.DISPLAY.JOB

DISPLAY LOGREC READ MVS.DISPLAY.LOGREC

DISPLAY MMS READ MVS.DISPLAY.MMS

DISPLAY M READ MVS.DISPLAY.M

DISPLAY MPF READ MVS.DISPLAY.MPF

DISPLAY NET READ MVS.DISPLAY.NET

DISPLAY OPDATA READ MVS.DISPLAY.OPDATA

DISPLAY PARMLIB READ MVS.DISPLAY.PARMLIB

DISPLAY PFK READ MVS.DISPLAY.PFK

DISPLAY PROD READ MVS.DISPLAY.PROD

DISPLAY PROG READ MVS.DISPLAY.PROG

DISPLAY R READ MVS.DISPLAY.R

DISPLAY RTLS READ MVS.DISPLAY.RTLS

DISPLAY SLIP READ MVS.DISPLAY.SLIP

DISPLAY SMF READ MVS.DISPLAY.SMF

DISPLAY SMS READ MVS.DISPLAY.SMS

DISPLAY SSI READ MVS.DISPLAY.SSI

DISPLAY SYMBOLS READ MVS.DISPLAY.SYMBOLS

DISPLAY T READ MVS.DISPLAY.TIMEDATE

DISPLAY TP READ MVS.DISPLAY.TCAM

DISPLAY TRACE READ MVS.DISPLAY.TRACE

DISPLAY TS READ MVS.DISPLAY.JOB

DISPLAY U READ MVS.DISPLAY.U

DISPLAY WLM READ MVS.DISPLAY.WLM

DISPLAY XCF READ MVS.DISPLAY.XCF

DUMP CONTROL MVS.DUMP

DUMPDS UPDATE MVS.DUMPDS

FORCE device CONTROL MVS.FORCE.DEV.device

Chapter 2. Defining Your Console Configuration 63

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

FORCE jobname CONTROL MVS.FORCE.JOB.jobname

The previous command is for a job that is not a started task.

FORCE jobname.id
FORCE id

CONTROL MVS.FORCE.STC.mbrname.id

The previous command is for a started task for which an identifier was provided.

FORCE jobname CONTROL MVS.FORCE.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.

FORCE U=userid CONTROL MVS.FORCE.TSU.userid

FORCE device,ARM CONTROL MVS.FORCEARM.DEV.device

FORCE jobname,ARM CONTROL MVS.FORCEARM.JOB.jobname

The previous command is for a job that is not a started task.

FORCE [jobname.]identifier,ARM CONTROL MVS.FORCEARM.STC.mbrname.id

The previous command is for a started task for which an identifier was provided.

FORCE jobname,ARM CONTROL MVS.FORCEARM.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.

FORCE U=userid,ARM CONTROL MVS.FORCEARM.TSU.userid

HALT EOD UPDATE MVS.HALT.EOD

HALT NET UPDATE MVS.HALT.NET

HALT TP UPDATE MVS.HALT.TCAM

HOLD UPDATE MVS.HOLD.TCAM

IOACTION CONTROL MVS.IOACTION

LIBRARY UPDATE MVS.LIBRARY

LOG READ MVS.LOG

MODE UPDATE MVS.MODE

MODIFY jobname UPDATE MVS.MODIFY.JOB.jobname

The previous command is for a job that is not a started task.

MODIFY userid UPDATE MVS.MODIFY.JOB.userid

MODIFY jobname
MODIFY jobname.id
MODIFY id

UPDATE MVS.MODIFY.STC.mbrname.id

The previous command is for a started task for which an identifier was provided.

MODIFY jobname UPDATE MVS.MODIFY.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.
Note: MODIFY might actually affect more than one job. For example:
v If START ABC.DEF and START ABC.GHI are issued, MODIFY ABC.* affects both jobs, and one authorization

request is issued for each.
v If the START ABC command is issued twice, two started tasks named ABC start running on the system. MODIFY

ABC affects both jobs, and one authorization request is issued for each.

MONITOR READ MVS.MONITOR

MOUNT UPDATE MVS.MOUNT

64 z/OS V1R3.0 MVS Planning: Operations

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

MSGRT READ MVS.MSGRT

PAGEADD UPDATE MVS.PAGEADD

PAGEDEL UPDATE MVS.PAGEDEL

QUIESCE CONTROL MVS.QUIESCE

RELEASE UPDATE MVS.RELEASE.TCAM

REPLY READ MVS.REPLY

RESET UPDATE MVS.RESET

RESET CN CONTROL MVS.RESET.CN

ROUTE system READ MVS.ROUTE.CMD.system

Note: When a system name is specified on the ROUTE command, system is the name of the system that is the
target of the command.

ROUTE *ALL READ MVS.ROUTE.CMD.ALLSYSTEMS

ROUTE *OTHER READ MVS.ROUTE.CMD.OTHERSYSTEMS

ROUTE sysgrpname READ MVS.ROUTE.CMD.sysgrpname

ROUTE (sys1,...,sysN) READ MVS.ROUTE.CMD.sys1

.

.

MVS.ROUTE.CMD.sysN

ROUTE (group1,...,groupN) READ MVS.ROUTE.CMD.group1

.

.

MVS.ROUTE.CMD.groupN

SEND READ MVS.SEND

SET APPC UPDATE MVS.SET.APPC

SET ASCH UPDATE MVS.SET.ASCH

SET CLOCK UPDATE MVS.SET.TIMEDATE

SET CNGRP UPDATE MVS.SET.CNGRP

SET DAE UPDATE MVS.SET.DAE

SET DATE UPDATE MVS.SET.TIMEDATE

SET GRSRNL UPDATE MVS.SET.GRSRNL

SET ICS UPDATE MVS.SET.ICS

SET IOS UPDATE MVS.SET.IOS

SET IPS UPDATE MVS.SET.IPS

SET MMS UPDATE MVS.SET.MMS

SET MPF UPDATE MVS.SET.MPF

SET OPT UPDATE MVS.SET.OPT

SET PFK UPDATE MVS.SET.PFK

SET PROG UPDATE MVS.SET.PROG

Note: For examples of how to define RACF profiles for this command, see “Using RACF to Control APF Lists” on
page 154.

Chapter 2. Defining Your Console Configuration 65

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

SET RESET UPDATE MVS.SET.TIMEDATE

SET RTLS UPDATE MVS.SET.RTLS

SET SCH UPDATE MVS.SET.SCH

SET SLIP UPDATE MVS.SET.SLIP

SET SMF UPDATE MVS.SET.SMF

SET SMS UPDATE MVS.SET.SMS

SETDMN UPDATE MVS.SETDMN.DMN

SETETR UPDATE MVS.SETETR.ETR

SETGRS MODE=STAR UPDATE MVS.SETGRS.MODE.STAR

SETIOS UPDATE MVS.SETIOS.IOS

SETLOAD UPDATE MVS.SETLOAD.LOAD

SETLOGRC CONTROL MVS.SETLOGRC.LOGRC

SETPROG UPDATE MVS.SETPROG

Note: For examples of how to define RACF profiles for this command, see the following topics in Chapter 5,
“Examples and MVS Planning Aids for Operations” on page 149; for SETPROG APF , see “Using RACF to Control
APF Lists” on page 154; for SETPROG EXIT, see “Using RACF to Control Dynamic Exits” on page 158; for
SETPROG LNKLST, see “Using RACF to Control LNKLST Concatenations” on page 164; and for SETPROG LPA,
see “Using RACF to Control Dynamic LPA” on page 170.

SETSMF UPDATE MVS.SETSMF.SMF

SETSMS UPDATE MVS.SETSMS.SMS

SETSSI ADD CONTROL MVS.SETSSI.ADD.subname

SETSSI ACTIVATE CONTROL MVS.SETSSI.ACTIVATE.subname

SETSSI DEACTIVATE CONTROL MVS.SETSSI.DEACTIVATE.subname

SETXCF UPDATE MVS.SETXCF.XCF

SLIP UPDATE MVS.SLIP

START mbrname[.identifier] UPDATE MVS.START.STC.mbrname[.id]

The previous command is for a started task for which an identifier was provided. mbrname is the name of the
member containing the JCL source.

START mbrname,JOBNAME=jobname UPDATE MVS.START.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.

START commands that use one or more of
the following keywords:

v DSN or DSNAME

v DISP

v PROTECT

UPDATE The resource name substitutes DDALERT for one
or more of the keywords.

MVS.START.jobname.qualifier.DDALERT

An example of the previous MVS START command is as follows:

START jobname.qualifier,DSN=dsname.qualifier,DISP=SHR

STOP jobname UPDATE MVS.STOP.JOB.jobname

The previous command is for a job that is not a started task.

STOP userid UPDATE MVS.STOP.JOB.userid

66 z/OS V1R3.0 MVS Planning: Operations

|
|

|

|

|

|
|

|

|

|

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

STOP jobname
STOP jobname.id
STOP id

UPDATE MVS.STOP.STC.mbrname.id

The previous command is for a started task for which an identifier was provided. mbrname is the name of the
member containing the JCL source.

STOP jobname UPDATE MVS.STOP.STC.mbrname.jobname

The previous command is for a started task for which an identifier was not provided. mbrname is the name of the
member containing the JCL source.
Note: STOP might actually affect more than one started task if more than one unit of work with the same name is
active at the same time. If so, there is one call to RACF for command authorization for each unit of work.

STOPMN READ MVS.STOPMN

STOPTR READ MVS.STOPTR

SWAP UPDATE MVS.SWAP

SWITCH CN CONTROL MVS.SWITCH.CN.cnme1.cnme2

Note: For SWITCH CN, cnme1 is the name of the console whose attributes are being switched. cnme2 is the name
of the console that receives the attributes during the switch.

SWITCH SMF UPDATE MVS.SWITCH.SMF

TRACE CT UPDATE MVS.TRACE.CT

TRACE MT CONTROL MVS.TRACE.MT

TRACE ST UPDATE MVS.TRACE.ST

TRACE STATUS UPDATE MVS.TRACE.STATUS

TRACK READ MVS.TRACK

UNLOAD UPDATE MVS.UNLOAD

VARY CN UPDATE MVS.VARY.CN

VARY CN,ACTIVATE READ MVS.VARY.CN

Note: Issue VARY CN,ACTIVATE only from the system console.

VARY CN,AUTH CONTROL MVS.VARYAUTH.CN

VARY CN,DEACTIVATE READ
UPDATE

MVS.VARY.CN

Note: For the VARY CN,DEACTIVATE command, READ applies only when that command is issued from the system
console; otherwise, UPDATE applies.

VARY CN,LOGON CONTROL MVS.VARYLOGON.CN

VARY CN,LU CONTROL MVS.VARYLU.CN

VARY CONSOLE UPDATE MVS.VARY.CONSOLE

VARY CONSOLE,AUTH CONTROL MVS.VARYAUTH.CONSOLE

VARY GRS CONTROL MVS.VARY.GRS

VARY HARDCPY CONTROL MVS.VARY.HARDCPY

VARY MSTCONS CONTROL
READ

MVS.VARY.MSTCONS

Note: For VARY MSTCONS, CONTROL applies after RACF is initialized. READ applies during a no master console
condition to allow an operator to establish a master console if necessary.

VARY NET UPDATE MVS.VARY.NET

VARY OFFLINE UPDATE MVS.VARY.DEV

Chapter 2. Defining Your Console Configuration 67

Table 10. MVS Commands, RACF Access Authorities, and Resource Names (continued)

Command/Keyword Authority Resource-Name

Note: If VARY CN,OFFLINE is specified, the rules for VARY CN apply (the system checks for UPDATE access to
MVS.VARY.CN, not MVS.VARY.DEV).

VARY OFFLINE,FORCE CONTROL MVS.VARYFORCE.DEV

VARY ONLINE UPDATE MVS.VARY.DEV

Note: If VARY CN,ONLINE is specified, the rules for VARY CN apply (the system checks for UPDATE access to
MVS.VARY.CN, not MVS.VARY.DEV).

VARY ONTP UPDATE MVS.VARY.TCAM

VARY OFFTP UPDATE MVS.VARY.TCAM

VARY PATH UPDATE MVS.VARY.PATH

VARY SMS UPDATE MVS.VARY.SMS

VARY WLM CONTROL MVS.VARY.WLM

VARY XCF CONTROL MVS.VARY.XCF

WRITELOG READ MVS.WRITELOG

Handling Unrecognized Commands

To handle MVS system commands that operators might enter but which the system
does not recognize, create an MVS.UNKNOWN profile for RACF auditing, and
define a universal access authority of READ.

Some command processors, including CANCEL, FORCE, MODIFY, and STOP, will
also use this resource when auditing unknown tasks or address spaces.

When you specify auditing, the auditing records contain the full text of the
commands as entered.

Other Ways to Control Command Authority for Consoles
If you do not use RACF to override MCS or SMCS console authority, you can
authorize specific commands issued from an MCS or SMCS console through the
command installation exit. You can specify command installation exits in
MPFLSTxx. See “Command Installation Exits” on page 122.

Planning Console Functions for Operators
CONSOLxx allows you to plan MCS and SMCS console screen functions for your
operators. How operators do work on consoles is affected by the following factors:

v The capability of the console to send commands and receive messages or status
displays

v The volume of messages on the console screen

v How messages roll or wrap on the screen and how quickly they move or are
overlaid

v How easily operators can delete unnecessary messages from the screen

v Out-of-line display areas for system status displays

v Message format and the information that appears in message displays

v How easily and efficiently operators can enter commands

68 z/OS V1R3.0 MVS Planning: Operations

In CONSOLxx, you can establish the use of an MCS display console. The USE
attribute for the console controls whether an operator can send commands as well
as receive messages and status. Your master console must be a full-capability
console able to accept commands and receive messages. On the other hand, an
output-only console is useful for an operator who only needs to monitor messages
or status displays.

How operators delete unwanted messages from the console screen has a direct
effect on the work they do. Message traffic, especially large numbers of unsolicited
messages or certain kinds of informational messages, can be controlled through
MPF message suppression. Important action messages that require a specific
operator response can be retained for later viewing by operators if AMRF is active.
However, operators need to be able to respond quickly to action messages and
remove unnecessary messages from the screen. Setting up screen functions to
help operators handle messages efficiently is an important part of console planning.

In CONSOLxx, you can establish whether messages roll or wrap on the console
screen, whether action messages are to be isolated from other types of messages,
or how operators can manually delete messages by letting them verify deletion
requests. You can also specify a hold-mode function for consoles in roll,
roll-deletable, or wrap mode so that the operator can “freeze” the screen to view an
important message.

You can define out-of-line display areas for an MCS or SMCS console. An
out-of-line display area is a specified part of the screen that can receive status
displays separate from the messages that appear. Output from certain commands
like TRACK, CONFIG, DISPLAY, or DEVSERV can be directed to these specific
console areas on the screen for operators to view.

You can control the message format so that certain information can appear or be
suppressed. Examples: you can control whether the jobname or system name
should accompany a message, and whether status displays contain or suppress
information about certain events like job starts or stops, when a data set is freed, or
information about TSO/E users.

Finally, you can define PFKs or control the multiple entry of commands for MCS or
SMCS consoles. Establishing PFKs for your MCS or SMCS consoles allows you to
control command functions for operators so that they can enter frequent commands
quickly and easily from their consoles. You can also define a command delimiter for
MCS or SMCS consoles so that operators can enter multiple commands on the
command line.

How to Control the Use of an MCS Console
The devices that you have defined as MCS consoles can function as:
v Full-capability consoles
v Status-display consoles
v Message stream consoles

The devices that you have defined as SMCS consoles can function only as
full-capability consoles.

Full capability consoles

A full-capability console has both input and output capability; the console can be
used both to enter commands and to receive status displays and messages. You

Chapter 2. Defining Your Console Configuration 69

can also control how messages move on the screen of a full capability console and
how operators can delete those messages as they fill the screen. For example, you
can specify that messages roll off the screen as the screen fills (roll or roll-deletable
mode) or that messages wrap, that is, overlay old existing messages on the screen
(wrap mode). For consoles in roll, roll-deletable, or wrap mode, you can define
HOLDMODE that allows operators to freeze the screen to view messages.

With all modes but wrap mode, you can divide the screen of a full-capability
console so that part of it receives general messages and the other part receives
status displays. When a status display is not on the screen, MCS uses the status
display area for general messages.

Status Display Consoles

A status display console has output capability only; it cannot be used to enter
commands. The system uses the screen to receive status displays.

Message Stream Consoles

A message stream console also has output capability only; it cannot be used to
enter commands. The system uses the screen to present general messages.

Note: In this book, the term output-only mode refers to status display mode and
message stream mode.

An operator can change a full-capability console to message stream or status
display. When the change occurs, the PFK display line, the instruction line, and the
entry area are incorporated into the message area or the display area. Once a
display console enters message stream or status display mode, it can accept no
more input; you must use another console to enter commands.

Examples of MCS Console Screens
Figure 8 shows screens of a full-capability, status display, and message-stream
console:

70 z/OS V1R3.0 MVS Planning: Operations

Message area is that part of the display where messages appear. Display area is
that part of the screen where status displays appear.

On full-capability console screens of 3277-2 models, the PFK display line displays
the numbers of the PFKs to select with the selector pen.

On all full-capability console screens, the instruction line displays console screen
control messages in response to certain actions (for example, if the operator makes
a CONTROL command error). The entry area (1 or 2 lines) allows operators to
enter commands on full-capability console screens.

The warning line on full-capability and message stream console screens warns the
operator of conditions that could require action (for example, when the message
area is full and one or more messages is waiting to appear.)

Operator information on the status of the console appears on some console
screens in the operator information area.

Defining the USE Attribute
Use the following keyword on the CONSOLE statement to define how to use a
display console:

USE Controls how the display console is used:

Warning line

Message area

Warning line

Entry area (2 lines)

Message area (Size varies
according to console type)

PFK display line (Only appears on the 3277-2 console)
Instruction line

Full-capability console Message stream console

Operator information area Operator information area

Operator information area

display area

display area

Status Display (SD) Console

Figure 8. Screen Formats of a Full-Capability, Status Display, and Message Stream Console

Chapter 2. Defining Your Console Configuration 71

The following are options for USE:

FC Defines a full-capability console able to enter commands and receive status
displays and messages

MS Defines a message stream console

SD Defines a status display console.

If a console is an input/output device, the default operating mode is full-capability
(FC).

SMCS consoles must specify the FC option.

Message Display and the Full-Capability Console Screen
As programs execute during system operation, the message area of a full-capability
console screen fills with messages that operators might need to delete. The system
can automatically remove messages from a console screen, or operators can make
room for more messages by manually deleting non-action messages and messages
for which action has been taken.

You can define automatic message deletion mode for an MCS or SMCS console.
With automatic message deletion, the system removes old messages without
operator assistance as the screen fills. “Specifying Automatic Message Deletion for
MCS or SMCS Consoles” describes how you can control the automatic message
deletion mode for a console. It describes automatic mode, roll mode, roll-deletable
mode, and wrap mode. To handle frequent messages that appear on full-capability
MCS or SMCS consoles, it is a good idea to use roll, roll-deletable, or wrap mode.
Specifying one of these automatic message deletion modes prevents messages
from backing up on system queues while the system waits for screen space.

With roll, roll-deletable, and wrap modes, you can also specify that the system
freeze the console screen for easier viewing of messages. “Temporarily Suspending
the Screen Roll” on page 76 describes HOLDMODE, the console option that allows
the operator to freeze the console screen to view messages.

Operators can also manually delete non-action messages from a full-capability
console screen. You can control whether an operator must verify a manual deletion
request to make changes or corrections. “Manual Deletion of Messages” on page 77
describes how operators can manually remove messages from a console screen.

You can also activate the action message retention facility (AMRF) so operators can
retrieve messages that have disappeared from the console screen. The action
message retention facility helps operators deal with the heavy volume of message
traffic in a system or sysplex. “Retaining Messages” on page 116 describes
message retention of action messages.

Specifying Automatic Message Deletion for MCS or SMCS Consoles
Use the following keyword on the CONSOLE statement in CONSOLxx to control
automatic message deletion:

DEL Specifies the mode for message deletion

The following are options for DEL:

Y Specifies automatic deletion mode

72 z/OS V1R3.0 MVS Planning: Operations

N Specifies that messages can only be manually deleted from the console
screen

RD Specifies roll-deletable mode; roll-deletable mode is the default.

R Specifies roll mode

W Specifies wrap mode

Automatic mode

In automatic mode , messages are removed whenever the message area becomes
full, or when a status display is overlaying messages in the bottom portion of the
message area. Flagged messages are the only messages removed under
automatic mode. These messages include:

v Action messages for which the action has been taken

v System or problem program messages that are marked deletable by the issuer

v Messages that are indicated as deletable at job step end

v WTOR messages that have been answered

v WTOR messages that have not been answered but that are associated with a
job step that has ended

Roll and roll-deletable modes

In roll mode , a specified number of messages are removed (or “rolled off”) when a
specified time interval elapses. Roll mode is particularly useful for monitoring heavy
message traffic.

Roll-deletable mode is the same as roll mode except that action messages are not
removed; they accumulate at the top of your screen. The operator can then delete
the action messages one at a time, either by using the CONTROL E command or
placing the cursor or light pen on the “*” or “@” that precedes the message and
pressing ENTER.

Use the following keywords to control the rate of rolling for a console screen in roll
or roll-deletable mode:

RNUM Controls the number of lines per screen roll; the default is 5 lines
per roll.

RTME Controls the rate of the screen roll; the default is 2 seconds
between rolls.

To request that roll mode go into effect and that two messages be rolled every
second, code the following parameters on the CONSOLE statement for the console:
DEL(R) RNUM(2) RTME(1)

For roll mode and roll-deletable modes, messages are not numbered on the screen.
Instead, a two-digit number appears in the first new message line after each screen
roll. This number indicates the number of messages waiting for display, and
includes any messages hidden by the status display information. If the number of
lines waiting for display is more than 99, AA appears in the first new message line.

Note: For 3290 consoles, do not specify 1/4 second or 1/2 second for RTME.
Specifying either this value can affect the performance of the console.

Adjusting RNUM and RTME values

Chapter 2. Defining Your Console Configuration 73

Because system workload can vary, you might want to change RNUM and RTME
values to meet the needs of your installation. To illustrate how you would code the
values in CONSOLxx, assume for a console named TAPEMSG, that you want to
define roll-deletable mode with five messages being deleted every 10 seconds.
Also, you want each message to display the system name from where the
messages are issued. Code the statement in CONSOLxx as follows:
CONSOLE DEVNUM(0C6) NAME(TAPEMSG) DEL(RD) RTME(10) RNUM(5) MFORM(S)

For a description of MFORM, see “Controlling the Format of Messages and Status
Information on Console Screens” on page 82.

Wrap mode

In wrap mode operators can view messages without having messages move off
the screen. When the screen is full, new messages overlay older messages. As the
messages begin to fill up the screen in wrap mode, they appear from top to bottom
on the console screen with the old messages on the top and the newer messages
on the bottom.

The console screen still preserves the instruction line, entry area, and warning line.
(See Figure 10 on page 75.) However, when the screen is filled, the messages
themselves do not roll off the screen. Instead a highlighted separator line that
separates the last displayed message from the newest displayed message moves
to indicate the new boundary between old and new messages. (A two-digit number
at the beginning of the separator line indicates the number of messages waiting for
display.)

When a new message cannot fit on the screen, the separator line overlays the
oldest message at the top of the screen and the new message appears at the
bottom.

As new messages are added, the separator line continues to move and overlay the
next oldest message on the screen with the newest message always appearing
above the line:

74 z/OS V1R3.0 MVS Planning: Operations

Figure 10 shows the same screen when a new message (IEE366I) appears:

Specifying RTME for WRAP mode

You can specify RTME for wrap mode to update the screen. As long as the device
is not a 3290, an RTME value of 1/4 or 1/2 second is good for a console in wrap
mode. To specify wrap mode for a console that displays a message every 1/2
second, code the following on the CONSOLE statement for the console:
DEL(W) RTME(1/2)

IEE600I REPLY TO 01 IS:NONE
ICH501I -- RACF IS NOT ACTIVE --
IEF677I WARNING MESSAGE(S) FOR JOB JES2 ISSUED
*02 $HASP426 SPECIFY OPTIONS -- JES2 SP 3.1.1
ISG011I SYSTEM SYSTEM2 - JOINING GRS COMPLEX
ISG004I GRS COMPLEX JOINED BY SYSTEM2
CSV210I LIBRARY LOOKASIDE INITIALIZED
*IEE352A SMF ENTER DUMP FOR SYS1.MANA ON PAGE98

04 --
IEA180I USING IBM DEFAULT VALUE PFK DEFINITIONS.

NO PFK TABLES REQUESTED
IKJ712I DEFAULT VALUES WERE USED FOR TEST
IKJ712I DEFAULT VALUES WERE USED FOR PLATCMD
IRA600I SRM CHANNEL DATA NOW AVAILABLE FOR ALL SRM FUNCTIONS
ICH508I ACTIVE RACF EXITS: ICHDEX01
ICH509I SYSRACF DD STATEMENT NOT SPECIFIED INMSTRJCL OR

ALLOCATION FAILURE FOR RACF DATA SET
*01 ICH502A SPECIFY NAME FOR PRIMARY RACF DATASET SEQUENCE 091 OR
’NONE’
R 1,none

IEE612I CN=MASTER DEVNUM=0FE SYS=SYSTEM1 CMDSYS=SYSTEM1 USERID=JIM

IEE163I MODE=W

Figure 9. Example of a Full Wrap Mode Screen

IEE600I REPLY TO 01 IS:NONE
ICH501I -- RACF IS NOT ACTIVE --
IEF677I WARNING MESSAGE(S) FOR JOB JES2 ISSUED
*02 $HASP426 SPECIFY OPTIONS -- JES2 SP 3.1.1
ISG011I SYSTEM SYSTEM2 - JOINING GRS COMPLEX
ISG004I GRS COMPLEX JOINED BY SYSTEM2
CSV210I LIBRARY LOOKASIDE INITIALIZED
*IEE352A SMF ENTER DUMP FOR SYS1.MANA ON PAGE98
IEE366I NO SMF DATASETS AVAILABLE--DATA BEING BUFFERED TIME*13:42:42

03 --
IKJ712I DEFAULT VALUES WERE USED FOR TEST
IKJ712I DEFAULT VALUES WERE USED FOR PLATCMD
IRA600I SRM CHANNEL DATA NOW AVAILABLE FOR ALL SRM FUNCTIONS
ICH508I ACTIVE RACF EXITS: ICHDEX01
ICH509I SYSRACF DD STATEMENT NOT SPECIFIED INMSTRJCL OR

ALLOCATION FAILURE FOR RACF DATA SET
*01 ICH502A SPECIFY NAME FOR PRIMARY RACF DATASET SEQUENCE 091 OR
’NONE’
R 1,none

IEE612I CN=MASTER DEVNUM=0FE SYS=SYSTEM1 CMDSYS=SYSTEM1 USERID=JIM

IEE163I MODE=W

Figure 10. Example of the Wrap Mode Screen after the Next Wrap

Chapter 2. Defining Your Console Configuration 75

Restrictions using Wrap Mode

In wrap mode, new messages overlay WTORs and action messages; unlike these
messages in roll deletable mode, WTORs and action messages are not retained on
the screen. Note also that for a console screen in wrap mode, you cannot use the
following commands:
v CONTROL A to define or change out-of-line display areas
v CONTROL D,N,HOLD to number and hold messages
v CONTROL E,nn(,nn) to remove specified lines from the screen
v CONTROL E,F to remove flagged messages from the screen
v CONTROL E,N to remove message numbers from the screen
v CONTROL T to refresh the TRACK command
v TRACK to enter the TRACK command

Note that using CONTROL E,SEG to eliminate groups of messages from a console
screen in wrap mode clears the entire screen of messages. Consoles in wrap mode
do not use out-of-line areas.

Temporarily Suspending the Screen Roll
Operators might need to suspend a rolling screen of messages to copy information
from the screen or consult a messages reference book. To suspend a rolling screen
of messages, you can use HOLDMODE to control how operators temporarily
suspend or hold screens when in roll, roll-deletable, or wrap mode.

Use the following keyword on the DEFAULT statement of CONSOLxx:

HOLDMODE Specifies that you want hold mode for MCS consoles in the system;
if YES, your operators can temporarily hold the message screen by
entering nulls on the command line or by pressing the enter key. If
NO, operators cannot use this method to hold messages on the
screen.

When hold mode is in effect, an operator can press enter to hold the screen and
read messages. The following shows the bottom of the console screen when
HOLDMODE is in effect:

IEE163I MODE = HELD

The following shows the bottom of the console screen in HOLDMODE when
messages are waiting to be displayed:

IEE163I MODE = HELD IEE159I MESSAGE WAITING

The following shows the bottom of the console screen in HOLDMODE when
messages are overlaid by a status display:

IEE163I MODE = HELD IEE160I UNVIEWABLE MESSAGE

To release the screen and return to roll, roll/deletable, or wrap mode, the operator
presses enter again. HOLDMODE has system scope; if you define HOLDMODE in
CONSOLxx for a system in a sysplex, it applies only to the MCS or SMCS consoles
on that system. If messages are backed up on a system when a console is in hold
mode, hold mode for the console is released.

76 z/OS V1R3.0 MVS Planning: Operations

Operators can also suspend the console screen using PFKs if the IBM defaults for
console PFKs are in effect:

1. Press PFK 5 to stop messages from rolling. (At IPL, PFK 5 is assigned the
command CONTROL S,DEL=N.)

2. Press PFK 6 to place the screen in roll-deletable mode and prevent message
backup. (At IPL, PFK 6 is defined as CONTROL S,DEL=RD.)

Comparison of Roll, Roll-Deletable, Wrap Modes, and HOLDMODE
Table 11 shows a comparison of roll mode, roll-deletable mode, and wrap mode,
and options you can specify including HOLDMODE.

Table 11. Comparison of Roll, Roll-deletable, and Wrap Mode

Mode HOLDMODE
allowed as option

RTME
allowed
as option

RNUM
allowed
as option

How action
messages are
handled

Roll Yes Yes Yes Roll off the screen
after RTME interval

Roll-deletable Yes Yes Yes Accumulate at top of
screen. Operator
removes them.

Wrap Yes Yes No Overlaid by new
messages

Manual Deletion of Messages
Operators can manually delete messages from the screen using the CONTROL E
command, the cursor, or the selector pen. If your operators need to obtain screen
space quickly, they can manually delete non-action messages as follows:
v Use the cursor or selector pen
v Use the CONTROL E command to select groups of messages to delete

Message deletion, like command entry, can be either conversational or
nonconversational . In conversational mode, the operator must verify the deletion
request using the cursor, selector pen, or CONTROL E command before the system
can remove the messages from the screen. When the operator performs one of
these functions, the screen displays the messages to be deleted and asks for
verification. The operator can then make corrections or changes, if necessary, and
then press the enter key.

In nonconversational mode, the operator can use the cursor, selector pen, or
CONTROL E command to manually delete messages; however, the deletion
requests do not need to be verified and messages are immediately deleted when
the operator performs the function. This procedure minimizes operator intervention.

Use the following keyword on the CONSOLE statement to control conversational
mode for the console:

CON Specifies whether you want conversational mode

In conversational mode where the operator must verify a deletion request, the
procedure to manually delete non-action messages is as follows:

Chapter 2. Defining Your Console Configuration 77

Manual deletion -
operator must verify

Using a selector pen or cursor Using the CONTROL
command

If CON(Y) 1. Place the pen or cursor on any part of a
non-action message

2. Press ENTER key

3. Vertical lines appear in position 3 of the
non-action message and each
non-action message above it.

In the instruction line, the following
message appears:

IEE157E DELETION REQUESTED

4. Message line numbers appear on
screen.

CONTROL E command appears on
command line indicating the request.

5. Verify the request, make changes, if
necessary, and press the ENTER key

To cancel the request, enter CANCEL.

1. If DEL(N), enter
CONTROL D,N to
display message
line numbers

2. Enter CONTROL
E,line number of
non-action
message to delete
(on CONTROL E,
you can also
specify a range of
lines to delete, a
SEG value, or F
to remove all
flagged
messages. See
z/OS MVS
System
Commands.)

3. CONTROL E
command appears
on command line
as entered

4. Verify the request,
make changes, if
necessary, and
press the ENTER
key

In non-conversational mode, the procedure to manually delete messages is as
follows:

Manual deletion - no
verification

Using a selector pen or
cursor

Using the CONTROL
command

If CON(N) 1. Place the pen or cursor
on any part of a
non-action message

2. Press the ENTER key

The non-action message
and all non-action
messages above it are
deleted from the screen.

1. Enter CONTROL D,N to
display message line
numbers (if DEL(N))

2. Enter CONTROL E,line
number of non-action
message to delete (on
CONTROL E, you can
also specify a range of
lines to delete, a SEG
value, or F to remove all
flagged messages. See
z/OS MVS System
Commands.)

The messages are
deleted from the screen.

How Operators Specify Message Numbering
If the console is not in automatic deletion mode, operators can control whether they
want the message line numbers on the console screen. With message line

78 z/OS V1R3.0 MVS Planning: Operations

numbers, they can more easily determine the range of messages to delete using
CONTROL E or CONTROL E,SEG. Consecutive numbers in positions one and two
appear for each message line, including continuation lines, for all message area
messages except status displays. A numbered message appears as follows:
12 IEE041I THE SYSTEM LOG IS NOW ACTIVE

To request message numbering, operators use the CONTROL D,N and CONTROL
E,N commands to display and erase message numbers:

1. Enter CONTROL D,N to display consecutive numbers in character positions one
and two of each message area line

2. Enter CONTROL E,N to remove the message numbers from the screen when
CONTROL D,N HOLD is in effect

When the operator issues CONTROL D,N and then deletes a message or cancels
an action, the numbers are removed from the screen. To ensure that the remaining
messages are renumbered, the operator can add the HOLD operand to the
command.

Notes:

1. Automatic message deletion (automatic mode, roll mode, or roll-deletable mode)
stops message numbering requested by the CONTROL D,N,HOLD command.

2. Because a display console screen can be “burned” by the number images, it is
recommended that you do not have the messages numbered all of the time.
When you are in conversational mode and delete messages by the CONTROL
command, all messages are temporarily numbered so that you can verify that
you have entered the correct delete command.

3. For very large screen sizes, only the first 99 rows can be numbered. All rows
after 99 contain AA in positions 1 and 2. Message lines with AA in the number
field cannot be deleted.

Using SEG to Delete Groups of Messages from the Screen
Operators can delete groups or “segments” of non-action messages on the screen
using the CONTROL E,SEG command. SEG specifies the number of message lines
to be deleted; you can define this value as a keyword on the CONSOLE statement.

Use the following keyword on the CONSOLE statement to specify the number of
lines the system deletes when an operator enters CONTROL E,SEG:

SEG Specifies the number of lines to be deleted when the operator
enters a CONTROL E,SEG command.

The IBM default depends on the type of console. z/OS MVS Initialization and
Tuning Reference provides default information for different console devices.

Status Displays and MCS and SMCS Consoles
A status display is a formatted, multi-line display of information about some part of
the system. It is written to MCS consoles in full-capability or status display mode
and to SMCS consoles, which must be in full capability mode, in response to
certain subsystem commands or the following MVS commands:
v DISPLAY
v CONFIG
v DEVSERV
v TRACK

Chapter 2. Defining Your Console Configuration 79

On consoles in status display or full capability mode, status displays are usually
presented in display areas (called out-of-line display areas) set aside for their use. If
you do not define one or more display areas, status displays appear in the general
message traffic. The information in the status display could, therefore, roll off the
screen before your operators can find it. “Setting Up Out-of-Line Display Areas on a
Console” describes how you set up status displays for your consoles.

When you have defined your status display consoles and console areas, your
operators can obtain information, such as the status of system devices and the
identification of the jobs active in the system, that can help you decide how best to
use system resources.

A status display is either static or dynamic. A display is static if it remains the same
until it is removed from the screen; a dynamic display is created by the TRACK
command and is updated by the system each time a preset time interval elapses.
(You can set the time interval for updating dynamic status displays for a console
using the UTME attribute. “Defining the Time Interval for Updating a Dynamic Status
Display” on page 82 describes how you can control the time interval.) Displays of
the TRACK command continue for the duration of the IPL or until the operator
issues another request.

You can route the output of the DISPLAY, CONFIG, DEVSERV, or TRACK
commands to any status display console or console area in your system or sysplex:

v DISPLAY provides information about job activity, TSO/E users, console
configuration, device status, and more.

v Output from CONFIG contains information about changes in the configuration of
processors, storage, channel paths, and other system resources.

v DEVSERV displays the status of DASD and tape devices.

v TRACK initiates a dynamic status display and provides job activity and TSO/E
user information. On the CONSOLE statement, you can tailor the kind of status
information that TRACK displays on a console.

For complete information on these commands, see z/OS MVS System Commands.

“Where to Route Status Displays” on page 81 describes how you route information
from these commands to status display consoles and areas.

Setting Up Out-of-Line Display Areas on a Console
You can control the number of out-of-line display areas on a status display or
full-capability console screen and the size of each area. You can specify up to 10
different out-of-line display areas, the location of the areas, and the number of
screen lines in each area. In a sysplex, you might direct status information for
several systems to different console areas on one screen of a full-capability
console.

You define out-of-line display areas for an MCS console or SMCS console. The
SMCS console must be in full-capability mode. You define the areas from the
bottom of the message area to the top of the area. Each area consists of four or
more screen lines designated to receive the status displays.

For each out-of-line display area, the system assigns the alphabetic display area
identifiers. The bottom-most area is assigned identifier A and additional areas are
assigned identifiers in alphabetic order, working toward the top of the screen. The
identifier Z always refers to the portion of the message area that is not assigned.

80 z/OS V1R3.0 MVS Planning: Operations

Figure 11 shows the screen format for a display console in full-capability mode
when two typical out-of-line display areas are defined for the screen. The first
(bottom-most) area has four lines, and the second has six lines. You can route
status displays for the console using the MSGRT keyword on the CONSOLE
statement. After IPL, operators can route status displays using the location operand
of the DISPLAY, TRACK, CONFIG, and MSGRT commands to area A or B, or to the
general message area.)
Use the following keyword on the CONSOLE statement, to define the out-of-line

display areas for a console:

AREA Defines the console out-of-line display area. The total number of
lines you specify for all out-of-line display areas must not exceed
the size of the screen.

If you do not code the AREA parameter, the system defines two display areas for
status display consoles and one display area for full-capability consoles. The
number of lines in each area depends on the type of device.

Operators can use CONTROL A to change out-of-line display areas. For the
maximum display area sizes for all devices that MVS supports as consoles, see
z/OS MVS Initialization and Tuning Reference.

Where to Route Status Displays
You can decide where you want to route the status display information from the
DISPLAY, MONITOR, CONFIG, or TRACK commands entered on the console. To
route the status display information from these commands issued on the console to
other consoles (or console areas) in the system or sysplex, use the following
keyword on the CONSOLE statement:

MSGRT Routes output from the DISPLAY, MONITOR, and CONFIG
commands issued on this console to other consoles.

One MSGRT parameter can define routing instructions for all or any combination of
the commands for which MSGRT defines routing instructions. You can define
different routing instructions for each console in the system or sysplex.

General Message Area (Z)

Display Area B
(6 lines)

Display Area A
(4 lines)

Instruction Line
Entry Area
(1 or 2 lines)
Warning Line

Operator Information Area

Figure 11. Sample Screen Showing Two Out-of-Line Display Areas on a Full-Capability
Console

Chapter 2. Defining Your Console Configuration 81

When you specify a console name and an out-of-line display area on the location
operand (L=) of any MVS command, you specify the name of the console, followed
by a dash and the alphabetic character for the out-of-line display area you want.
For example, to direct the displays of the DISPLAY and CONFIG commands to two
different out-of-line display areas of a console named MSG, the operator can enter:
MSGRT (D=A,L=MSG-A),(CF,L=MSG-B)

An operator can change these routing instructions through commands and route
many of the displays that normally come to the console to another console’s
general message area, to a display area on another console, or to a specific display
area on the operator’s console. An operator can use the following to route status
displays of the DISPLAY, TRACK, and CONFIG commands:
v L= on DISPLAY, TRACK, and CONFIG
v MSGRT command

Operators can use the location operand (L=) of the DISPLAY, TRACK, and CONFIG
commands to route status displays to specific display areas on the requesting
console or to route displays to other output-only consoles. However, operators must
have the proper authority to route information to another console using the L=
operand.

If the operator does not specify L=, the system presents the display according to
the MSGRT instructions in effect for console. If there are no MSGRT instructions in
effect, the system presents the display as follows:

1. In the issuing console’s lowest unoccupied out-of-line display area.

2. If all areas are full, in the out-of-line display area containing the oldest display of
the issuing console.

3. If no out-of-line display area can be found (because the screen has no display
areas or because all areas are being used by dynamic displays), in the general
message area Z of the issuing console.

See z/OS MVS System Commands for how to use the DISPLAY, TRACK, CONFIG,
and MSGRT commands.

Defining the Time Interval for Updating a Dynamic Status Display
Each console where a dynamic status display is in progress has a time interval
value that determines how often the system updates the TRACK command
displays. Use the following keyword on the CONSOLE statement to define the time
interval:

UTME Specifies, in seconds, the interval of time between updates of
dynamic status displays for a console. The range is from 10 to 999.

If you do not define a time interval value, the system updates the display every 30
seconds.

Controlling the Format of Messages and Status Information on
Console Screens

On a display console, a message can appear by itself or with information about the
message, such as job and system identification and the time the message was
issued. In a status display, information about when jobs start or stop, when a data
set is freed, or information about TSO/E user sessions can appear. Also, mount
messages in status displays can contain specific information about mounting
volumes.

82 z/OS V1R3.0 MVS Planning: Operations

You can control the information for messages or status displays that operators view
on the console screen. Controlling message formats can help free up screen space
or make it easier for operators to read messages. Controlling status information can
help operators monitor workload or handle job allocation that requires mounting
requests.

Use the following keyword and its options on the CONSOLE statement to control
information about messages for display:

MFORM Controls the message format on a console screen.

Options you can specify for MFORM are as follows:

M Specifies that the system display only the text of the message without time
stamp, job id, or job name

J Specifies that the system display the job name or id along with the
message text

S Specifies that the system display the system name that originated the
message

T Specifies that the system display a time stamp with the message

X Specifies that the system suppress the job name and system name for
JES3 messages issued from the global processor

How messages are displayed on the screen can affect your operations. Consider
eliminating information from displayed messages when:

v Messages wrap to a second line making it difficult for operators to read the
screen.

One way to prevent line wrapping, or to allow system name, job name, and time
stamp to be displayed with all the message text on one line, is to use an
emulator and set a large screen width to allow all the data to appear on one line.

v The system id is not important (for example, in a single system)

To request that the system add a time stamp, the name of the system that issued
the message, and the job name or id of its issuer, code the following on the
CONSOLE statement:
MFORM(J,S,T)

Operators can also use the CONTROL S command to make these same changes.
The format of a message that includes information in the previous example is:

Time stamp System name Jobname/id Message text

MCS or SMCS console display

Defining the X option for an MCS or SMCS console allows you to suppress the
system name and jobname for JES3 messages that are issued from the global
processor when those messages appear on the MCS or SMCS console screen.

For example, to suppress both jobname and system name for JES3 messages
issued on the global processor, code the following MFORM values on the
CONSOLE statement for the MCS console:
CONSOLE DEVNUM(devnum) NAME(conname) MFORM(T,J,S,X)

For an SMCS console, devnum must be SMCS.

Chapter 2. Defining Your Console Configuration 83

Displaying system names in a sysplex

In a sysplex, the number of characters displayed on the console screen for system
name depends on the longest name of the system that joins the sysplex. If SYSB is
the longest name, all system names will be four characters. If SYB is the longest
name, all system names will be three characters.

For example, if three systems in a sysplex are named SYS1, SY2, and S3, the
displayed messages from any system will have a four character system name:
SYS1 message
SY2 message
S3 message

If a system with longer name joins the sysplex, the length of the system name in
the messages is adjusted to accommodate the new name. For consistency, you
might want to use system names of the same character length.

DISPLAY R, CONTROL S, and MFORM

Operators can issue the DISPLAY R command with MFORM options to retrieve
information about messages awaiting action. In a sysplex, if the operator issues
DISPLAY R without MFORM, the format of the messages depends on how MFORM
has been specified for CONSOLxx or on the CONTROL S command:

v If CONTROL S has NOT been issued, the format of the messages depends on
MFORM values specified for CONSOLxx on the system where the command is
issued.

v If CONTROL S with MFORM options has been issued before the DISPLAY R
command has been issued, the format of the messages depends on MFORM
values specified for CONTROL S.

For JES3 multisystem environments, when DISPLAY R is issued without MFORM,
the system uses the S option as a default.

Displaying Jobname, Data Set Status, and TSO/E Information
You can request that the system notify operators in status displays when the
following events occur:
v Whenever a job starts and ends
v Whenever a data set is freed
v Whenever a TSO/E user starts and ends a session

Use the following keyword on the CONSOLE statement to define job, data set, or
TSO/E information:

MONITOR Specifies that you want to display certain status information

Options you can specify for MONITOR are as follows:

JOBNAMES Specifies that the name of the job is displayed in status display
areas whenever the job starts and stops

STATUS Specifies that data set names and volume serial numbers are
displayed in status display areas whenever data sets are freed

SESS Specifies that the TSO/E user identifier is displayed whenever the
TSO/E session begins and ends

With JOBNAMES or SESS, you can add a time stamp (-T).

84 z/OS V1R3.0 MVS Planning: Operations

Adding Information to Mount Messages
You can request that the system add certain information to all mount messages on
consoles. The MONITOR keyword on the INIT statement in the CONSOLxx
member controls whether the system adds information to mount messages for all
console status displays.

Use the following keyword and its options on the INIT statement to specify
information about mount messages for status displays:

MONITOR Specifies that you want to display status information for mount
messages

Options you can specify for MONITOR are as follows:

SPACE Specifies that the available space on the direct access volume
appears in the message

DSNAME Specifies that the name of the first non-temporary data set allocated
on the volume appears in the mount message that refers to it

Defining PFKs and Other Command Controls for Consoles
You can control the program function keys (PFKs) for MCS or SMCS consoles and
also how operators can enter multiple commands using a command delimiter.

Setting up PFKs for Consoles
CONSOLxx and PFKTABxx let you define the PFKs for all your MCS or SMCS
consoles on a system. For each console, you activate a PFK table — a table that
your installation has defined — by specifying the PFK table name on the CONSOLE
statement. The PFK table resides, optionally with PFK tables for other consoles, in
a PFKTABxx Parmlib member.

Using entries in the PFK table, you can:

v Assign one or more commands to a PFK for the console

You can associate the text of one or more commands with a PFK. Later, when an
operator presses this PFK on the console, the commands are entered into the
system.

v Assign one or more other PFKs to a PFK for the console

You can associate the commands assigned to other PFKs with a PFK.

To create PFK table entries, use the following keywords in PFKTABxx of
SYS1.PARMLIB:

TABLE Defines the table to contain PFKs for the console. You associate
this table with the console by specifying the table name on the
PFKTAB keyword of the CONSOLE statement.

PFK Defines the program function key.

CMD Defines the command or commands to be assigned to the PFK.

KEY Associates the PFK you define with another key or list of keys.

CON Defines whether the PFK you define operates in conversational or
nonconversational mode.

Conversational or nonconversational mode applies to commands defined to a PFK.
In nonconversational mode, the commands associated with a key are entered

Chapter 2. Defining Your Console Configuration 85

immediately when the operator presses the key on the console. In conversational
mode, pressing a PFK causes the command to appear in the entry area, but no
enter action takes place. Operators can change, enter, or cancel the command
according to their requirements.

In conversational mode, the cursor normally appears under the third non-blank
character when the command is in the entry area. If you want the cursor to appear
in a different location, when you define the command, type an underscore
immediately to the right of the character under which the cursor is to appear. The
system deletes the space occupied by the underscore in the actual command. For
example, if you add the following entry to a PFK table:
PFK(5) CMD(’D U,L=_XXX’) CON(Y)

pressing PFK 5 causes the following to appear in the entry area:
D U,L=XXX

If you want an underscore to appear in the command, use two underscores. They
are treated as one underscore, and are not used for cursor placement. For
example, if the PFKTAB table contains:
PFK(17) CMD("E_XXXXXXXX,SRVCLASS=BATT__HI"),CON(Y)

when you press PFkey 17, the entry area will contain
E XXXXXXXX,SRVCLASS=BAT_HI

Selector pens also use the definitions in PFK tables.

When you have created your PFK tables in PFKTABxx, you can associate them
with the consoles in your configuration. Specify the following keyword on the
CONSOLE statement to associate a PFK table with the console:

PFKTAB Defines the name of the PFK table defined in PFKTABxx that
contains PFKs for this console. The name must be the same as the
name for TABLE in PFKTABxx.

When you have defined the PFK tables for all your consoles, you can activate the
PFKTABxx member that contains the table definitions at IPL. Use the following
keyword on the INIT statement of CONSOLxx to activate PFKTABxx:

PFK Defines the name of the PFKTABxx member that contains the PFK
definition tables for your consoles. For PFK you specify a value that
corresponds to xx in PFKTABxx. If you specify NONE for PFK, the
system uses IBM defaults for console PFKs. See Table 12.

If you do not specify PFKs for your consoles or if the system does not find the PFK
parameter, it issues the message:
IEAI180 USING IBM DEFAULT DEFINITIONS. NO PFK TABLES REQUESTED.

IBM supplies defaults for PFKs 1 through 9 as follows:

Table 12. IBM Defaults for PFKs

PFK Command Comment

1 CONTROL E,1 Erase one line from screen

2 CONTROL E Erase one segment from screen

3 CONTROL E,D Erase status display from screen

86 z/OS V1R3.0 MVS Planning: Operations

Table 12. IBM Defaults for PFKs (continued)

PFK Command Comment

4 CONTROL D,F Frame display forward in area

5 CONTROL S,DEL=N Hold in-line output

6 CONTROL S,DEL=RD Resume in-line output

7 DISPLAY A,L List active jobs and TSO/E users

8 DISPLAY R,L List all outstanding operator action requests

9 CONTROL D,U Update dynamic display

10 and up No definition provided

In a sysplex, PFK settings have system scope; they apply only to the consoles on
the system where they are defined.

An Example of Defining a PFK Table
The following example shows you how to define and activate a PFK table for a
console configuration defined in CONSOL01. In this example, the installation has
been using IBM defaults for PFKs 1 through 9. PFK table MVSCMDS to be created
will reside in the PFKTAB01 Parmlib member.

Procedure Coding of Parmlib Member

Create the PFK table named MVSCMDS Assign commands to PFK(nn) definitions in
PFKTAB01, where nn is the PFK number.

Associate MVSCMDS with a console Specify PFKTAB(MVSCMDS) on the
CONSOLE statement in the CONSOL01
Parmlib member.

Activate the PFKTAB01 Parmlib member that
contains the PFK table named MVSCMDS

Specify PFK(01) on the INIT statement in the
CONSOL01 Parmlib member.

When you IPL the system, the system uses MVSCMDS to define the PFKs on your
console.

Use the same PFKTAB01 member to hold the PFK tables for your JES2 and tape
library operators. Figure 12 shows the PFKTAB01 Parmlib member. It contains three
tables: MVSCMDS, JES2CMDS, and TLCMDS.

Chapter 2. Defining Your Console Configuration 87

For information about using the CONTROL command to modify PFKs for a console,
see z/OS MVS System Commands.

Defining the Command Delimiter for Full-Capability Consoles
You can define full-capability consoles so that operators can enter multiple
commands from the command line. You define a character that the operator can
use to separate MVS commands. Operators can divide a series of commands on
the command line using the character as the command delimiter. (You can also
specify multiple commands using the command delimiter when defining PFKs for
consoles.)

To define a command delimiter for MCS consoles, use the following keyword on the
INIT statement of CONSOLxx:

CMDDELIM

If you do not define a command delimiter, your operators cannot enter multiple
commands from a full-capability console.

You can also use a command delimiter to separate subsystem commands; however,
some delimiters might conflict with characters used in certain subsystem commands
like JES commands.

For command delimiter characters that you can use and the restrictions that apply,
see z/OS MVS Initialization and Tuning Reference.

Hardcopy Processing
Hardcopy processing allows your installation to have a permanent record of system
activity and helps you audit the use of operator commands. You can record system
messages and, optionally, commands, by using either the system log (SYSLOG),
the operations log (OPERLOG), or an MCS printer. The group of messages and
commands that are recorded is called the hardcopy message set. The system log,
operations log, or MCS printer that receives messages is called the hardcopy

MVSCMDS

JES2CMDS

TLCMDS

Commands that define
PFKs for MVS consoles

Commands that define
PFKs for JES2 operations

Commands that define
PFKs for tape library
consoles

PFKTAB01

Figure 12. PFKTAB01 Parmlib Member.

88 z/OS V1R3.0 MVS Planning: Operations

medium. You can specify a group of console devices that can serve as backup
devices for the hardcopy medium. You can also allow an extended MCS console to
receive hardcopy messages from one or more systems in a sysplex.

Hardcopy processing is required in a sysplex.

Note: The term “hardcopy log” can refer to:
v The system log (SYSLOG)
v The operations log (OPERLOG)
v The device used to print hardcopy messages
v The data set containing hardcopy messages
v The actual printed copy of the hardcopy messages

The Hardcopy Message Set
The hardcopy message set represents messages that can be either recorded in
hardcopy on the system log or the operations log, or sent to an MCS printer. The
hardcopy message set is usually sent to the current active log, either the system
log or the operations log, or both, but may be sent to a printer console, if the
installation chooses. The hardcopy message set is defined at system initialization
and may subsequently changed by the VARY command.

Characteristics of the Hardcopy Message Set
The hardcopy message set includes messages with one or more of the following
characteristics. Messages in the hardcopy message set:
v Have the “hardcopy only” message delivery attribute
v Are WTOR messages
v Have descriptor codes of 1, 2, 3, 11, or 12
v Have no routing codes
v Have an installation-specified routing code
v Are command responses of the installation’s specified command level
v Have a message type specified.

Messages for which “no hardcopy” is requested are not included in the hardcopy
message set, regardless of their other characteristics.

Defining the Hardcopy Message Set
Messages included in the hardcopy message set are either commands and
command responses or unsolicited system messages. Installations can control the
selection criteria for commands and command responses. Installations can control
some of the criteria for unsolicited system messages; some of the criteria are fixed.

You define criteria for messages in the hardcopy message set at system
initialization with the HARDCOPY statement in the CONSOLxx member of Parmlib:

v For commands and command responses, the CMDLEVEL option of the
HARDCOPY statement controls the types of commands included in the hardcopy
message set.

v For unsolicited system messages, the ROUTCODE option of the HARDCOPY
statement controls the routing codes the system uses to select messages for the
hardcopy message set. If an option is not specified, the default value is used for
the hardcopy message set definition.

Once MVS has been initialized, you can modify the criteria of the hardcopy
message set using the VARY HARDCPY command.

Chapter 2. Defining Your Console Configuration 89

Unsolicited system messages for which the criteria are fixed are those messages
that match one or more of the following characteristics:
v Have descriptor codes of 1, 2, 3, 11, or 12
v Are WTORs
v Have no routing codes
v Have a message type specified
v Are hardcopy only messages.

In a JES2 complex, you define the hardcopy message set in the CONSOLxx
member of Parmlib. If you are using the JES3 hardcopy log (JES3 DLOG), it is
maintained on the JES3 global processor for all messages issued in the complex.
For information, see z/OS JES3 Initialization and Tuning Guide.

Printing the Hardcopy Message Set
The hardcopy message set can be printed at once by the hardcopy output device or
directed to either the system log, the operations log, or both; the system log is
printed periodically. To obtain a permanent log about operating conditions and
maintenance for all systems in a sysplex, you should use a coupling facility
OPERLOG log stream. To obtain a permanent log about operating conditions and
maintenance for a system operating independently, you can use either a DASD-only
OPERLOG log stream or SYSLOG.

The Hardcopy Medium
You can specify whether the hardcopy medium is an MCS printer, the system log
(SYSLOG), or the operations log (OPERLOG) at system initialization using the
DEVNUM, UD, and HCPYGRP keywords on the HARDCOPY statement in the
CONSOLxx member of Parmlib. Once the system has been initialized, operators
can use the VARY HARDCPY command to redefine the hardcopy medium.
Operators can, however, enter the VARY HARDCPY command to change a
hardcopy device only from MCS, SMCS or extended MCS consoles with master
authority.

Reference
For complete information about the HARDCOPY statement of CONSOLxx, see
z/OS MVS Initialization and Tuning Reference.

An extended MCS console can also receive the hardcopy message set. You
request that an extended MCS console receive the hardcopy message set by using
the MCSOPER macro with the HARDCOPY attribute on the OPERPARM
parameter. You can also use this macro to collect all the hardcopy messages from
one or more systems in a sysplex. See z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU for information about the MCSOPER
macro.

Hardcopy Processing
In a sysplex, the values for the HARDCOPY statement have system scope; they
apply only to the system where HARDCOPY is defined. If you use the MCSOPER
macro to have an extended MCS console receive all the messages in the hardcopy
message set from one or more systems in a sysplex, it will receive messages from
the hardcopy message set as it is defined on each system.

Format of Hardcopy Records
Your hardcopy records can continue to have a 2-digit year format or can have a
4-digit year format. To specify use of a 4-digit year, use the HCFORMAT keyword

90 z/OS V1R3.0 MVS Planning: Operations

on the HARDCOPY statement in CONSOLxx. For any programs that read and
analyze hardcopy records, the IHAHCLOG mapping macro is provided. The
HCLFRMT or HCRFRMT fields will indicate which format is being used in the log
records. The HCL mapping is used for a 2-digit year format and the HCR mapping
is used for a 4-digit year format.

Using OPERLOG
The operations log (OPERLOG) is a log stream that uses the system logger to
record and merge communications about programs and system functions from each
system in a sysplex. Only the systems in a sysplex that have specified and
activated the operations log will have their records sent to OPERLOG. For example,
if a sysplex has three systems, SYS A, SYS B, and SYS C, but only SYS A and
SYS B activate the operations log, then only SYS A and SYS B will have their
information recorded in the operations log.

IBM recommends that JES3 customers with a multisystem sysplex use an
OPERLOG coupling facility log stream and turn off JES3 DLOG and SYSLOG.

You can also use OPERLOG as a DASD-only log stream. This method is only
suitable for a single system sysplex, because a DASD-only log stream is
single-sysplex in scope and you can only have one OPERLOG log stream per
sysplex. This means that if you make OPERLOG a DASD-only log stream, only one
system can access it. See the system logger chapter of z/OS MVS Setting Up a
Sysplex for information on DASD-only log streams.

The messages are logged using message data blocks (MDB), which provide more
data than is recorded in the SYSLOG. You can use member IEAMDBLG, in
SYS1.SAMPLIB, to convert OPERLOG records into SYSLOG format.

The operations log is operationally independent of the system log. An installation
can choose to run with either or both of the logs. If you choose to use the
operations log as a replacement for SYSLOG, you can prevent the future use of
SYSLOG; once the operations log is started with the SYSLOG not active, enter the
WRITELOG CLOSE command.

Although the operations log is sysplex in scope, the commands that control its
status and the initialization parameter that activates it have a system scope,
meaning that a failure in operations log processing on one system will not have any
direct effect on the other systems in the sysplex. You can set up the operations log
to receive records from an entire sysplex or from only a subset of the systems,
depending on the needs of the installation.

Initializing the Operations Log

Before you can begin using the operations log, you must define a log stream using
the system logger services. Specify the name of the log stream as
SYSPLEX.OPERLOG in either the data administrative utility or in the IXGINVNT
macro. See z/OS MVS Setting Up a Sysplex for more information about preparing
to use a log stream and on sizing the coupling facility structure for OPERLOG.

You must also verify that the operations log will contain the messages you need.
Messages in the operations log will include the hardcopy message set, which you
control. See “The Hardcopy Message Set” on page 89 for more information.

To activate the operations log manually, enter a VARY command.

Chapter 2. Defining Your Console Configuration 91

Processing Operations Log Records

You might have your own programs for analyzing SYSLOG records in batch jobs.
These programs will not work with the operations log because the records are in
MDB format. You can convert the SYSLOG analysis programs. The IEAMDBLG
sample program, available in SYS1.SAMPLIB, is an example of a program that
reads selected operations log records and converts them from MDB to SYSLOG
format for analysis.

Using SYSLOG
The system log (SYSLOG) is a data set residing in the primary job entry
subsystem’s spool space. It can be used by application and system programmers to
record communications about problem programs and system functions. The
operator can use the LOG command to add an entry to the system log.

Note: You can change the SYSLOG data set characteristics dynamically through
the dynamic allocation installation exit. See z/OS MVS Installation Exits.

SYSLOG is queued for printing when the number of messages recorded reaches a
threshold specified at system initialization. The operator can force the system log
data set to be queued for printing before the threshold is reached by issuing the
WRITELOG command.

Specifying an Alternate Console Group for Hardcopy Recovery
You can plan the recovery of your hardcopy output device by specifying the name
of a group of console devices that MVS can switch to if the device fails. MVS
searches for an eligible device based on the order of the console members
specified in the alternate console group, and selects the first available device as the
hardcopy medium.

You define alternate console groups that contain eligible hardcopy devices in
CNGRPxx. Eligible console devices to use for hardcopy switching must be printer
devices; you can specify *SYSLOG*, in which case MVS can select the system log
as the hardcopy medium.

You specify the alternate console group name on the HCPYGRP keyword of the
HARDCOPY statement. The CNGRPxx member that contains the console group
definition must be active in order for MVS to select an alternate device from the
group during a hardcopy switch.

If you do not specify an alternate console group on HCPYGRP, MVS selects any
active non-display console by checking all consoles in the order in which they were
specified in the CONSOLxx member of SYS1.PARMLIB. MVS assigns the hardcopy
function to the first active non-display console it finds. If the entire search is
unsuccessful, MVS suspends hardcopy processing and notifies the master console.

Log Switching and JES2 Restart
If OPERLOG is the hardcopy medium and the OPERLOG fails on one system, the
system attempts to switch hardcopy to the SYSLOG. The system on which the
operations log fails will write messages about the failure to SYSLOG. Any systems
in the sysplex that are not affected by the failure will continue to write to the
operations log.

If the SYSLOG is also inactive, or if the use of SYSLOG has been prevented by the
WRITELOG CLOSE command, the system attempts to switch hardcopy to an
appropriate printer console. If a printer console is not available, the system
searches the group name indicated in the HCPYGRP parameter of the CONSOLxx

92 z/OS V1R3.0 MVS Planning: Operations

parmlib member for a suitable backup. If the HCPYGRP parameter was not
specified or the search for a suitable backup fails, the system attempts to reactivate
the SYSLOG. If all of these attempts fail to provide a backup to the failed
operations log, the system issues a message indicating that there is no hardcopy
medium available.

When OPERLOG is restarted, the system automatically begins recording to the
operations log again. If hardcopy recording had been switched to a printer console
or to SYSLOG, you must manually vary these offline again.

If SYSLOG is the hardcopy medium and the SYSLOG device fails, the system
attempts to switch hardcopy to an appropriate printer console. In a JES2 system,
the hardcopy message set can be directed to a printer console if the installation
chooses. If a system running JES2 fails, the system automatically switches from the
printer console to SYSLOG when JES2 is restarted after the failure. If a suitable
console is not active at the time of failure, the system suspends hardcopy
processing and notifies the master console.

Table 13 summarizes log switching during an automatic restart:

Table 13. Automatic restart of log with JES2

Log device JES2 terminates JES2 restarts

OPERLOG Does not affect OPERLOG. Does not affect OPERLOG.

SYSLOG System switches to an available
console

System switches back to
SYSLOG

hardcopy console System ignores switch System restores hardcopy
console

Temporarily Disabling the Hardcopy Medium
If you are using SYSLOG as the hardcopy medium and it is not operating properly,
MVS saves the messages in log buffers until their number reaches the value of
LOGLIM. When this limit is reached, messages remain on the WQE queue until the
WQEs reach the MLIM limit. At this point, no new messages can be displayed; the
only way to re-start the log is to de-activate it. This requires a re-IPL.

In Version 1 Release 2 of z/OS a parameter is available to turn off hardcopy. The
parameter, UNCOND, is coded on the VARY command. For example:
VARY devnum,HARDCPY,OFF,UNCOND

After this command is executed, you can remove SYSLOG as the hardcopy
medium, and WRITELOG CLOSE is accepted.

Note: This should be a temporary measure because, if SYSLOG has been
removed the system can lose messages from hardcopy.

If SYSLOG is removed and it was the only hardcopy medium, it is considered
temporarily off. Log buffers can be saved only until they reach LOGLIM. After this
point WQEs are not saved and some messages can be lost, but the outage will be
prevented.

Chapter 2. Defining Your Console Configuration 93

94 z/OS V1R3.0 MVS Planning: Operations

Chapter 3. Managing Messages and Commands

Whether you are defining a console configuration for a system or for several
systems in a sysplex, you must take into account your operators, the amount of
message traffic they must handle, and command processing.

Messages and commands form the basis of operator communication in an MVS
system or sysplex. Message routing, sending the appropriate messages to the right
consoles, helps your operators manage work efficiently. Message routing using
CONSOLxx can simplify the work operators need to do.

If you want to increase system automation to simplify operator tasks, you should
examine message flow to determine which messages you can select for your
automation tasks and which you can suppress. Suppressing messages is important
in any MVS environment because your operators deal with fewer messages on their
console screens. Message suppression also serves as a basis for your NetView
automation planning.

In a sysplex, operators can also route commands from a console on one system to
be processed on one or more other systems in the sysplex. You might want to
encourage the use of system symbols in routed commands so you can identify the
systems that process those commands. For more information, see the section on
sharing commands in z/OS MVS System Commands Summary.

MVS provides message processing facilities to help you and your operators cope
with message flow on consoles. For example, MPF or the installation message
processing exit IEAVMXIT can help you select messages to suppress or to perform
further processing like message highlighting for more readable console displays.
AMRF lets your operators retrieve important action messages no longer visible on
the console screen. The MVS command installation exit lets you process and tailor
system commands. You use one or more MPFLSTxx members in SYS1.PARMLIB
to control much of this message and command processing for an MVS system.

This chapter describes how to manage messages and commands in an MVS
system or sysplex. It describes message and command routing and the message
processing that MVS provides to suppress messages, retain messages for console
viewing by operators, and select messages for automation or for further processing
by installation exits, and a brief description of automation in a sysplex. It also
provides information on controlling WTO and WTOR message buffers, specifying
installation exits to process commands, and using the MVS message service to
handle the translation of messages into other languages. For additional information,
see the section on issuing a command response message in z/OS MVS
Programming: Authorized Assembler Services Guide.

General Characteristics of Messages and Commands
Operators can issue commands to correct problems or to query the system to
determine if it is operating properly. They often do this in response to system
messages. Some messages require a reply from the operator. These messages are
called WTORs (write-to-operator-with-reply). The operator responds to these
messages by entering the REPLY command. Automation programs like NetView
use messages and command lists to simplify operator tasks and actions.

Messages and commands can be routed throughout a system or sysplex; the
routing of messages and commands is an important part of operations planning.

© Copyright IBM Corp. 1988, 2002 95

You want to ensure that operators are receiving the necessary messages at their
consoles to perform their tasks. You want to be able to select the proper messages
for suppression, automation, or other kinds of message processing.

Commands in a sysplex can run on other systems and affect system processing. In
a sysplex, operators can also route commands from one system to another for
processing. You might want to limit command processing to a specific system in the
sysplex, or handle commands through command installation exits.

MVS messages have routing codes and message levels that, in large part,
determine how messages are routed in a system or sysplex. Routing codes are
decimal numbers from 1 to 128 that can be assigned to a console. For example,
routing codes can:

Routing code 1 (master console action) indicates messages that require a
specific operator action.

Other routing codes indicate messages that convey information about a specific
system function or operator area. For example, messages with routing code 6
convey about the disk library.

Other routing codes indicate an error condition. For example, messages with
routing code 10 convey information about a system error, an uncorrectable I/O
error, or information about system maintenance.

Other routing codes have specific meanings. For complete information, see
z/OS MVS Routing and Descriptor Codes.

For MCS, SMCS and extended MCS consoles, you can specify which routing codes
the console is to receive.

Message levels allow MVS to select messages according to the severity of the
condition or situation described in the message. Message levels can range from
WTOR messages that require an operator response, to informational messages that
indicate system status. You assign these levels to specific MCS, SMCS or extended
MCS consoles so the system can direct messages at those levels to the console.
For example, you can assign message level (R) for WTOR messages to a master
console or a full-capability console that handles critical system messages. Assigning
message levels to the appropriate consoles in your configuration is a good way to
control message traffic for MCS, SMCS and extended MCS consoles.

You can ensure that a console receives action messages, WTOR messages, and
important informational messages that the system could not deliver to the expected
console by assigning the UD attribute to the console. Any MCS, SMCS or extended
MCS console with the UD attribute can receive and display these messages.

The system sometimes issues synchronous messages that bypass normal console
queuing. These messages might require immediate operator action or can indicate
system problems. You can define a group of consoles from which MVS can select a
candidate to display these synchronous messages. For more information, see
Chapter 2, “Defining Your Console Configuration” on page 13.

Message and Command Routing
Understanding message and command flow in an MVS system or sysplex can help
you handle message and command processing.

96 z/OS V1R3.0 MVS Planning: Operations

Message Flow in a System
When MVS issues either a write-to-operator (WTO) message or
write-to-operator-with-reply (WTOR) message, message processing exits receive
control to allow the installation to process the message. Each time a WTO or
WTOR message is issued, it flows through message exit IEAVMXIT, if it exists. You
can specify other message processing exits to override IEAVMXIT in the MPFLSTxx
Parmlib member. MPFLSTxx also allows you to control other kinds of message
processing like message highlighting, message suppression, and message
automation.

After a message passes through the message processing exits, subsystems like
JES2, JES3, or NetView can receive the message for processing. For example,
NetView can process any message that MPFLSTxx defines as eligible for
automation. Subsystem allocatable consoles can receive the message for display.

After subsystem processing occurs, the message passes to the hardcopy log.
Depending on CONSOLxx values that control hardcopy logging, the hardcopy log
can record the message.

After the system records the message in the hardcopy log, the message passes to
MCS, SMCS and extended MCS consoles where it can be displayed.

The following summarizes this generalized message flow for an MVS system:

1. The system issues the message.

2. Processing specified in MPFLSTxx for the message occurs. IEAVMXIT or the
installation exits specified through MPFLSTxx receive control.

3. The subsystems receive the message.

4. Depending on CONSOLxx values, hardcopy log processing records the
message.

5. The MCS, SMCS console or extended MCS console can display the message.

Command Flow in a System
When the operator issues a command in a single MVS system, the system records
the command in the hardcopy log if the command is eligible for recording, as
specified in CONSOLxx. The command then flows through one or more command
installation exits specified in MPFLSTxx. If exit processing changes the original
command, the system issues message IEE295I and then, if the modified command
is eligible for recording, records the command in the hardcopy log. Finally, the
command processor for the command gets control to process the command on the
system.

The following summarizes this generalized command flow for an MVS system:

1. An operator or program issues the command.

2. Depending on CONSOLxx values, hardcopy log processing records the
command.

3. Processing specified in MPFLSTxx for the command occurs. The installation
exits specified through MPFLSTxx receive control.

4. If the exit processing modified the command, the system issues message
IEE295I and depending on CONSOLxx values, hardcopy log processingrecords
the command.

5. If any installation exit processes the command, no further command processing
occurs.

Chapter 3. Managing Messages and Commands 97

6. The subsystems receive the command.

7. If any subsystem processes the command, no further command processing
occurs.

8. The MVS command processor receives control to process the command.

Command Flooding
Most MVS commands are executed by attaching a task in either the *MASTER* or
CONSOLE address space. If too many such tasks are attached at one time (usually
because a program has issued too many MGCRE macros), command flooding
occurs.

Attached commands that run in the *MASTER* or CONSOLE address space are
divided into four “command classes”. In each class, only 50 commands can execute
at one time. Any additional commands in that class must wait for execution. This
prevents an out-of-storage condition. To manage the number of commands that are
awaiting execution, the system operator can issue the CMDS command to display
the status of commands, and remove selected commands that are awaiting
execution. The IEECMDS macro provides similar function.

v For information about the CMDS command: z/OS MVS System Commands

v For information about the IEECMDS macro: z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG

Message and Command Flow in a Sysplex
In a sysplex, MVS messages and commands can flow from system to system.
Because you can direct the message or command to one or more systems, you
need to understand how exits, subsystems, and hardcopy log processing occurs in
a sysplex.

Consider the following for message and command flow in a sysplex:

v Console operations. MCS, SMCS and extended MCS consoles can receive
messages from different systems or enter commands to affect the processing of
other systems.

v Installation exits. Installation exits can perform much of your message and
command processing. For processing like message suppression, making
messages eligible for automation, or for processing that alters commands,
message and command flow in a sysplex become important.

v Subsystem processing. Subsystems can process MVS messages and
commands. To help control or coordinate subsystem functions in a sysplex,
subsystems need to consider from which systems messages and commands
originate.

v Automation for systems in a sysplex. Automation programs like NetView use
messages and commands to control automation in a system. How different
systems control automation in a sysplex depends on how messages and
commands can flow from system to system.

v Logging of messages and commands in a sysplex. You can use the operations
log (OPERLOG) to record messages and commands from all the systems in a
sysplex. The operations log centralizes log data in a sysplex.

Messages in a Sysplex
In a sysplex, you can direct a message to one or more systems for processing. You
can control message routing to consoles in the sysplex through the MSCOPE
keyword on the CONSOLE statement for MCS or SMCS consoles. For extended

98 z/OS V1R3.0 MVS Planning: Operations

MCS consoles, you can use RACF or MCSOPER to specify MSCOPE values. (See
Table 1 on page 7.) Operators can use the VARY command to control MSCOPE.
Specifying MSCOPE allows the console to receive messages from one or more
systems in the sysplex.

Regardless of the console MSCOPE value, the sysplex can direct messages in the
form of command responses to the system where the console that issued the
command is attached. For example, a console on SYA that issues a DISPLAY
command for other consoles on SYB can expect to receive the message display in
response to the command. For a subsystem-allocatable console, the sysplex can
deliver a message to the subsystem where the console is allocated. Thus, a
subsystem console on SYA can receive messages intended for the console even if
the messages originated on SYB.

On the system that issues the message, the message flow occurs as it does for a
single system. If the message flows to other systems in the sysplex, sysplex
services directs the message to the subsystems for processing, but the message
bypasses the message processing exits and the hardcopy log on the target
systems.

The following summarizes message flow through a sysplex:

1. The system issues a WTO or WTOR message.

2. The message processing exits on the system that issues the message get
control.

3. The subsystems can receive the message on the system that issues the
message.

4. Hardcopy log processing on the system that issues the message can record the
message.

5. Sysplex services can route the message to consoles on other systems.

6. The subsystems on each receiving system can receive the message.

7. The MCS, SMCS and extended MCS consoles on the appropriate system can
receive the message for display.

As a result of this message flow in a sysplex, message processing that occurs
through exits is possible only on the system that issues the message. You need to
keep this in mind when you plan your installation exits for messages. Similarly, the
hardcopy recording of the message occurs only on the issuing system.

On the other hand, subsystems like NetView can receive the message on both the
issuing system and any receiving system where NetView is installed. You can route
messages to NetView on any system in order to control message automation for
the system, but the NetView subsystems must coordinate automation for the
sysplex based on the scope of the message flow to systems in a sysplex. (For
planning automation using NetView, see NetView Automation: Planning.)

Message Recovery Following System Failures
Individual systems in a sysplex sometimes fail while the remaining systems
continue to function normally. When planning recovery for a sysplex, consider the
systems to which consoles are attached. To ensure that your operators receive
needed messages during system failures, IBM recommends that you configure your
consoles for message recovery following system failures. This will ensure that the
message traffic that was being routed to a console on the inactive system is routed
to active consoles on other systems.

Chapter 3. Managing Messages and Commands 99

Such coverage is especially important for controlling applications that run on
multiple systems, or that manage a sysplex-wide resource (such as a JES2
checkpoint data set). These applications are more likely to direct important
messages to consoles on other systems in the sysplex.

Here are two possible ways to configure your consoles for message recovery in a
sysplex:

v For each console you want to cover, choose an alternate console group that
includes consoles attached to other systems in the sysplex.

v Have consoles on one or more systems in the sysplex serve as “catch all”
consoles, which display undelivered action messages and WTORs from all
systems.

The following sections explain these techniques in greater detail.

Defining Alternate Console Groups for Message Recovery

Have each console in the sysplex belong to an alternate console group which
contains at least one console on another system in the sysplex. This approach is
recommended if your consoles do not normally receive messages from other
systems (that is, the console is defined with MSCOPE(*)).

The more systems you use for your alternates, the better coverage you have for
failures that span multiple systems. To be covered for all possible combinations of
system failures, define an alternate console on every system that has consoles.

Specify the name of a group of consoles that can serve as back-ups on the
ALTGRP parameter on the CONSOLxx parmlib member, where the group names
are defined in the CNGRPxx member. In the CNGRPxx parmlib member, define
NAME as the group of alternate consoles, and define the console names (in order
of priority) on the MEMBERS parameter. For example, if the alternate group you
want your messages routed to is named JES1, and the names of the consoles in
group JES1 were CON1, CON2, and CON3, and that is the ranked order of the
consoles that you want your recovered messages sent to, you would code the
CNGRPxx parmlib member:
NAME(JES1) MEMBERS(CON1,CON2,CON3)

In the CONSOLxx member, on the CONSOLE statement for each console, specify
its alternate group:
ALTGRP(JES1)

The advantage of using alternate console groups is that your alternate message
recovery consoles do not have to receive all of the other system’s messages on an
ongoing basis. The selected alternate console will receive the target console’s
messages only if the target console becomes inactive.

Defining “Catch All” Consoles for Message Recovery

In CONSOLxx, code MSCOPE=(*ALL) and UD=YES for each console that is to
receive important undelivered (UD) action messages and WTORs from all systems
in the sysplex. To have full coverage for any combination of system failures, define
at least one console with MSCOPE=(*ALL) and UD=YES for each system in the
sysplex.

100 z/OS V1R3.0 MVS Planning: Operations

The advantage in this technique is that one “catch-all” console will display important
“action” messages and WTORs that were directed to a console on the inactive
system.

The disadvantages to this technique are:

v the console will receive all messages from all systems that are directed by route
code.

v the console is not defined as the alternate console, however, so any
informational messages sent to the console on the inactive system will still be
lost.

Commands in a Sysplex
For commands in a sysplex, you need to consider:

v Command scope in the sysplex. You can route commands to one or more
systems in the sysplex for processing.

v Type of command routing.

You can route commands in the following ways:

v Using the CMDSYS keyword in CONSOLxx. CMDSYS allows an operator to
enter the command from the console and have the command automatically
routed to another system for processing. (See “Using CMDSYS on the
CONSOLE Statement” on page 109.) Thus, you can define your MCS or SMCS
consoles with CMDSYS in CONSOLxx to control command routing in the
sysplex. For extended MCS consoles, you can use RACF or MCSOPER to
define CMDSYS values. (See Table 1 on page 7.) Operators can use CONTROL
V to control CMDSYS.

v Using the command prefix facility (CPF). CPF allows you to identify a unique
command prefix for each system or subsystem in the sysplex. (See “Using the
Command Prefix Facility” on page 110.) CPF allows you to define prefixes for
commands so that the operator can enter the command from any console in the
sysplex and expect the command to run on the appropriate subsystem.

v Using the MVS ROUTE command. ROUTE specifies another command to be
routed to one or more target systems for processing (see “Using the ROUTE
command” on page 109 for details about ROUTE).

v Using the L= operand on certain MVS commands like CONTROL or DISPLAY. L=
allows the operator to specify a target console name for a console on any system
in the sysplex. (See “Using the L=Operand on Certain Commands” on page 111.)
For example, the operator can enter the CONTROL command with L= on one
console to change the console characteristics of another console on a different
system.

Command Flow, CMDSYS and CPF in a Sysplex
If you specify CMDSYS or use CPF to route commands, consider the following:

v When the operator enters the command from the console, sysplex services can
route the command to the system specified by CMDSYS or CPF.

Note: Processing for the MVS ROUTE command is different; see “Command
Flow and the ROUTE Command in a Sysplex” on page 102.

v The system that issues the command and the system that receives the command
can process the command as follows:

1. Hardcopy log processing on both systems can record the command.

2. The command processing exit or exits of both systems get control.

Chapter 3. Managing Messages and Commands 101

3. Hardcopy log processing on both systems can record the command if exit
processing modified the command.

4. If any installation exit processed the command, no further command
processing occurs.

5. The subsystems on both systems receive the command.

6. The command processor for the command on each subsystem can process
the command. If the subsystem processes the command, no further
command processing occurs.

7. The MVS command processor for the command on both systems processes
the command.

8. If the command contains system symbols, the system that receives the
command (not the system on which the command was entered) substitutes
text for the system symbols.

For example, suppose your installation defines the command prefix S02 to
system SYS2 and you enter the following command on system SYS1:
S02 START CICS,JOBNAME=CICS&SYSNAME.,...

First, system SYS1 sends the command to system SYS2. Then SYS2
substitutes the text that it has defined to the &SYSNAME system symbol:
START CICS,JOBNAME=CICSSYS2,...

9. If a command that is specified in the COMMNDxx parmlib member contains
system symbols, the system does not substitute text for the system symbols
during parmlib processing. The system that receives the command
substitutes text for the system symbols when it processes the command.

Unlike message installation exits, command installation exits receive control on both
the system that issues the command and the system that is the target of the
command.

As with messages, NetView on any system can receive the routed command. To
coordinate command activity for automated operations, you must consider the
scope of the command flow in a sysplex.

Command Flow and the ROUTE Command in a Sysplex
If you use the ROUTE command, consider the following:

v The MVS ROUTE command is made up of two parts: the ROUTE command
along with the target system(s) in the sysplex and a second command to be
routed to the specified system(s).

v The system that issues the command processes the ROUTE part of the
command as follows:

1. Hardcopy log processing for the system can record the ROUTE command.

2. The command processing exits of the system get control.

3. Hardcopy log processing for the system can record the ROUTE command if
exit processing modified the command.

4. If any installation exit processed the ROUTE command, no further command
processing occurs and sysplex services routes the second part of the
command to the appropriate system.

5. The subsystems on the system receive the ROUTE command.

6. If any subsystem processed the ROUTE command, no further command
processing occurs and sysplex services routes the second part of the
command to the appropriate system.

7. The command processor for ROUTE on the system processes the command.

102 z/OS V1R3.0 MVS Planning: Operations

8. Sysplex services can route the second part of the command to the
appropriate system for processing.

9. If CMDSYS is active for your console, a ROUTE command overrides but
does not change the CMDSYS system.

v Each system that receives the routed command processes it as follows:

1. Hardcopy log processing on the system can record the routed command.

2. The command processing exits of the system get control of the command (for
example, a DISPLAY command specified on ROUTE).

3. Hardcopy log processing on the system can record the routed command if
exit processing modified the command.

4. If any installation exit processed the routed command, no further command
processing occurs.

5. The subsystems on the system receive the routed command.

6. If any subsystem processed the routed command, no further command
processing occurs.

7. The MVS command processor for the command on the system processes the
routed command.

For example, if a ROUTE command specifies a DISPLAY command and the
operator enters the command from SYA, hardcopy log processing for SYA can log
the ROUTE command. If the routed part of the command (DISPLAY) is intended for
SYB, hardcopy log processing for SYB can log the DISPLAY command. The
installation exits of SYA can process ROUTE, and the installation exits of SYB can
process DISPLAY. Subsystems on SYA receive the ROUTE command, while
sysplex services directs the routed DISPLAY command to SYB where the
subsystems on SYB receive DISPLAY. The command processors for ROUTE on
SYA and for DISPLAY on SYB can process the command.

Note: In ROUTE commands that specify system symbols, the system on which the
command is entered processes the system symbols in the ROUTE portion of
the command. The system to which the command is routed processes the
remaining portion. See the description of the ROUTE command in z/OS MVS
System Commands for details.

Command Flow and the L= Operand in a Sysplex
If you enter a command from a console on one system and specify L= to affect a
console on another system, consider the following:

v The system that issues the command processes the command as follows:

1. Hardcopy log processing for the system can record the command.

2. The command processing exits of the system get control of the command.

3. If exit processing modified the command, hardcopy log processing on the
system can record the command.

4. If any installation exit processed the command, no further command
processing occurs.

5. The subsystems on the system receive the command.

6. If any subsystem processed the command, no further command processing
occurs.

7. The command processor for the command on the system processes the
command.

8. Sysplex services routes the command to the appropriate system where the
target console is attached.

Chapter 3. Managing Messages and Commands 103

v Any system that receives the command processes it as follows:

1. Hardcopy log processing for the system can record the command.

2. The command processor on the system processes the command.

For example, if the operator issues a CONTROL command from CONS1 on SYA to
change the display area of CONS2 on SYB, hardcopy log processing occurs for
both SYA and SYB. The installation exits of SYA can get control. Subsystems on
SYA receive the CONTROL command. The command processor for CONTROL
processes the command.

Sysplex services directs the CONTROL command to SYB where SYB logs the
command and changes the console display area for CONS2 on SYB. (Only the
installation exits on SYA are able to process the command.)

Note: Do not use system symbols on the L= parameter on the ROUTE command.

Routing Messages
You can define routing codes and message levels to a specific console so that the
console receives the appropriate messages indicated by the routing code or
message. For MCS or SMCS consoles, you define routing codes and message
levels in CONSOLxx. Your security or TSO/E administrator defines routing codes for
users of extended MCS consoles.

Sometimes a message is issued without any assigned routing information. You can
define default routing codes for these messages in CONSOLxx.

Whenever MVS cannot deliver action messages, important informational messages,
or WTOR messages to an active console in a system or sysplex, MVS sends the
messages to any console with the UD attribute for display. Specifying UD ensures
that the messages are not lost and will appear not only on the master console but
on any console with the UD attribute in the system or sysplex.

You can optionally define the hardcopy log device with the UD attribute. If no
console can display undelivered messages, the hardcopy log can record them.
“Defining the UD Attribute for Consoles” on page 107 describes how you define a
console to receive and display undelivered action messages, important
informational messages, or WTOR messages.

You can also define a group of consoles eligible to receive and display synchronous
messages that bypass normal message queuing. “Display of Synchronous
Messages” on page 51 describes how you can define console groups for
synchronous messages.

Altering some console attributes might cause a message loss, UD loss, or
SYNCHDEST loss. If a loss occurs, MVS issues a DISPLAY CONSOLE,HCONLY
command and message IEE889I. You need to understand that this can happen and
can affect automation.

The potential for this situation to occur comes from using these commands:
VARY CN
VARY CONSOLE
CONTROL V,LEVEL
SWITCH CN

104 z/OS V1R3.0 MVS Planning: Operations

Defining Routing Codes
Most messages have one or more routing codes. The system uses these codes,
decimal numbers from 1 to 128, to determine which console or consoles should
receive a message. You can assign routing codes to consoles in a system or
sysplex so that the appropriate messages are routed to the right console. In a
sysplex, messages are routed from any system to consoles with the matching
routing characteristics. To limit message routing in a sysplex, you can use the
MSCOPE keyword on the CONSOLE statement. See “Directing Messages from
Other Systems to a Console in a Sysplex” on page 108.

Use the following keyword on the CONSOLE statement to define routing codes for
an MCS or SMCS console:

ROUTCODE Defines the routing codes in effect for the console.

The default is NONE; ROUTCODE(NONE) for a console without master authority
means that the system assigns no routing codes to the console.
ROUTCODE(NONE) for a console with master authority means that the system
sends messages with routing codes 1 and 2 to the console. If you specify ALL, the
system sends messages with routing codes 1 to 128 to the console. For a
description of routing codes, see z/OS MVS Routing and Descriptor Codes.

For every routing code (except routing code 11), you should ensure that there is a
receiving console. If there is no receiving console for a routing code, the system
issues messages to inform you. (Operator consoles do not need to receive routing
code 11, which indicates programmer information.)

Routing codes do not appear with a message at a console; routing codes 1 through
28 do, however, appear on the hardcopy log. To see the routing codes each
console receives in a system or sysplex, operators can use the DISPLAY
CONSOLES command.

To route all messages with routing codes 1, 2, 9, and 10 to MSTR2, code the
following CONSOLE statement in the CONSOLxx member:
CONSOLE DEVNUM(81D) NAME(MSTR2) AUTH(MASTER) ROUTCODE(1,2,9,10)

Notice in the example that the console has master authority and that an operator
can issue any MVS command from it. This console is not required to receive tape,
DASD, or teleprocessing messages so the routing codes for those messages are
omitted. In a sysplex, this console receives messages with defined routing codes 1,
2, 9, and 10 from all active systems unless MSCOPE limits the scope.

For users of extended MCS consoles on TSO/E, the security or TSO/E
administrator can define routing codes 1 through 128. See “Controlling Extended
MCS Consoles Using RACF” on page 152.

Operators can use the VARY CN command to change routing codes for both MCS
and extended MCS consoles.

Handling Messages without Routing Codes
For queuing messages that have no defined routing codes, descriptor codes, or
console destination, you can use DEFAULT ROUTCODE. Use the following
keyword on the DEFAULT statement of CONSOLxx for messages that have no
routing code information:

ROUTCODE Defines the routing codes for messages that do not have them.

Chapter 3. Managing Messages and Commands 105

You can assign any combination of routing codes from 1 through 128. If you specify
ROUTCODE(ALL), the system assigns routing codes 1 through 128; if you specify
NONE, the system does not assign any routing codes. If you do not code
ROUTCODE on the DEFAULT statement, the default for messages without
assigned routing codes is the range of routing codes 1 through 16.

Defining Message Levels for a Console
Assigning routing codes is one way to limit message traffic to a console. You can
further reduce the number of messages that appear on a console by directing
certain messages to consoles by message levels. Descriptor codes can also appear
with messages and further describe the significance of the message levels.

The system differentiates among the following kinds of message levels:

v Write-to-operator with reply (WTOR) messages, which might demand an
immediate reply.

v System failure and immediate action messages (descriptor codes 1 and 2), which
indicate a serious error or that a task is awaiting a requested operator action.

v Critical eventual action messages (descriptor code 11), which indicate that an
eventual action of critical importance is requested on the part of the operator.

v Eventual action messages (descriptor code 3), which request an eventual action
that does not require immediate operator attention.

v Broadcast messages, which are messages normally sent to every active console
regardless of the routing code you assigned to the console.

v Informational messages, which generally indicate system status. (Most messages
are informational. MVS recognizes informational messages with descriptor code
12 for special routing.)

Descriptor codes and message levels

The system gives special consideration to messages with descriptor codes 1, 2, 3,
11, 12, and WTOR messages. Consoles with the UD attribute will receive these
messages for display if they could not be queued to any active console which could
have received the message. See “Defining the UD Attribute for Consoles” on
page 107.

MVS also handles messages with descriptor code 13 in a special way. If a message
has been specified for automation in MPF, you can assign descriptor code 13 to the
message in a message processing exit (like IEAVMXIT) to indicate that the
message has been previously automated. You can then reissue the message.
Descriptor code 13 can be useful when a message has been automated on one
system in a sysplex but needs to be reissued to other systems in the sysplex.

To limit message routing in a sysplex, you can use the MSCOPE keyword on the
CONSOLE statement. See “Directing Messages from Other Systems to a Console
in a Sysplex” on page 108.

To define message levels for a console, use the following keyword on the
CONSOLE statement:

LEVEL Defines the message level in effect for the console.

Assignment by message level means that a console can accept combinations of
action, broadcast, and informational messages that the system sends to a console.
Options you can specify for LEVEL include the following:

106 z/OS V1R3.0 MVS Planning: Operations

R Messages that require an operator reply are to appear

I Immediate action messages (descriptor codes 1 and 2) are to appear

CE Critical eventual action messages (descriptor code 11) are to appear

E Eventual action messages (descriptor code 3) are to appear

IN Informational messages are to appear

NB Broadcast messages are not to appear

ALL All messages, including broadcast messages, are to appear

You can specify one or any combination of these options for LEVEL. If LEVEL in
the CONSOLxx member is not coded, the system sends all messages, including
broadcast messages, to the console.

To direct only WTOR messages and immediate action messages to a console
named ACCT, code this statement in CONSOLxx:
CONSOLE DEVNUM(0C6) NAME(ACCT) LEVEL(R,I)

Operators can use the CONTROL V command to change LEVEL.

Specifying Message Levels and Routing Codes for a Console
The following example illustrates the relationship between the routing codes and the
message levels assigned to a console named TDISK:
CONSOLE DEVNUM(81D) NAME(TDISK) ROUTCODE(5,6) LEVEL(R,IN)

In the example, TDISK receives informational messages directed to the tape
libraries (routing code 5) and disk libraries (routing code 6). In a sysplex, console
TDISK receives messages with these defined message levels from all active
systems unless MSCOPE limits the system scope.

Defining the UD Attribute for Consoles
If action messages (those with descriptor codes 1, 2, 3, or 11), informational
messages with descriptor code 12, or WTOR messages are not delivered to any
console in the configuration, you can specify that the system display these
messages on MCS, or SMCS consoles or on extended MCS consoles in a system
or sysplex. Thus, operators can view these important messages on any console
without having to rely only on the master console.

To specify that the system direct undelivered messages to a console, use the
following keyword on the CONSOLE statement:

UD Specifies if you want to define the console to receive undelivered action
messages, informational messages with descriptor code 12, and WTOR
messages.

If you specify UD(Y), the console has the UD attribute and will display these
messages. UD(N) is the default for any console that is not the master console and
indicates that the console not display the messages. Note that the master console
in the system or sysplex by default displays action messages, messages with
descriptor code 12, and WTOR messages.

You can also specify UD(Y) on the HARDCOPY statement. Specifying UD on
HARDCOPY prevents the system console from receiving undelivered messages.

Chapter 3. Managing Messages and Commands 107

When you specify UD(N) for HARDCOPY, if the system directs undelivered action
messages, informational messages with descriptor code 12, or WTOR messages to
the system console.

Operators can use the VARY CN command to change the UD attribute for a
console or the VARY,HARDCPY command to change the UD attribute for the
hardcopy log.

Directing Messages from Other Systems to a Console in a Sysplex
In a sysplex, if you don’t want your operators receiving certain messages from all
systems, you can limit some of the messages they receive. These messages are
any messages not explicitly routed to a console.

Use the following keyword on the CONSOLE statement to direct certain messages
in a sysplex to a given console:

MSCOPE In a sysplex, defines the systems that can send messages to this
console.

The default is MSCOPE(*ALL), which indicates that messages from the local
system as well as all other systems in the sysplex appear on the console. If a
system is specified on MSCOPE but is not active, the console does not receive any
messages.

MSCOPE values override other routing attributes for the console; that is, the
console receives messages only from the system you specify. However, if MSCOPE
limits system scope, you can still send messages from other systems using the
console name on commands and macros. Operators can use the VARY command
to change MSCOPE.

Replying to Messages from Other Systems in a Sysplex
You can use the MSCOPE keyword to control which consoles can reply to
messages issued from consoles that are defined to other systems in the sysplex. To
use a console to reply to such messages, include the other system’s name on the
MSCOPE keyword of the CONSOLE statement in the CONSOLxx parmlib member
for this system.

Directing Messages that Are Eligible for Automation to Extended MCS
Consoles

You can specify a message as eligible for automation. In MPFLSTxx, you can
specify AUTO(YES) for the message, or you can use message processing exits to
indicate that the message is eligible for automation.

For any message that is eligible for automation, you can define an extended MCS
console to receive the message for processing. To allow an extended MCS console
to receive all messages that are eligible for automation, you define the console
attribute through the MCSOPER macro or RACF using the OPERPARM keyword. In
a sysplex, you can also define which systems are to direct the messages to the
extended MCS console by specifying the OPERPARM console attribute for
MSCOPE.

Using an extended MCS console in conjunction with an automation program like
NetView can help you plan your automated operations for a system or sysplex. For
information on extended MCS consoles, see “Extended MCS Consoles” on page 6.
For information on MCSOPER, see z/OS MVS Programming: Authorized Assembler

108 z/OS V1R3.0 MVS Planning: Operations

Services Reference LLA-SDU. For information on NetView and automation
planning, see NetView Automation: Planning.

Routing Commands
In a sysplex, you can route commands to other systems for processing in the
following ways:
v “Using CMDSYS on the CONSOLE Statement”
v “Using the ROUTE command”
v “Using the Command Prefix Facility” on page 110
v “Using the L=Operand on Certain Commands” on page 111

Using CMDSYS on the CONSOLE Statement
Use the following keyword on the CONSOLE statement to define command
association between a console and a system in a sysplex:

CMDSYS Defines the system in a sysplex where you want to send
commands entered on this console for processing.

Defining your consoles through this kind of command association can help your
operators view a particular system in the sysplex and limit activities to that system.
The default is CMDSYS(*), which indicates that commands entered on the console
are processed on the local system where the console is defined. If a system
specified for CMDSYS is not active, the console receives an error message
whenever the operator enters a command. Operators can use the CONTROL V
command to change CMDSYS for MCS, SMCS, and extended MCS consoles.

To let SYA direct commands entered on an attached console called TAPE to SYB,
code the following statement in CONSOLxx for SYA:
CONSOLE DEVNUM(243) NAME(TAPE) CMDSYS(SYB)

If a different system is specified for CMDSYS and an operator issues the MSGRT
command from the console, the command is not processed on the system
specified. MSGRT initiates status displays for TRACK, CONFIG, or DISPLAY
commands for the system on which MSGRT is entered. Operators can use the
ROUTE command to send MSGRT to another system for processing. Other
commands not processed on a different target system specified on CMDSYS for the
console include:
v All CONTROL commands except for CONTROL M
v LOGON/LOGOFF
v TRACK/STOPTR
v ROUTE

For example of how these commands operate in a sysplex, see “Commands in a
Sysplex” on page 101.

Using the ROUTE command
Your operators can use the ROUTE command to send commands to other systems
not specified on CMDSYS without changing the CONSOLE statement values in the
CONSOLxx Parmlib member. In the following example, an operator wants to route
the CANCEL command to SYB to cancel the job JOBPRINT:
ROUTE syb,CANCEL JOBPRINT

The ROUTE command directs a command to the system you specify, to all systems
in a sysplex, or to a group of systems in a sysplex. ROUTE with the specified

Chapter 3. Managing Messages and Commands 109

command overrides but does not change the values you code for CMDSYS on the
CONSOLE statement. In a sysplex, both systems invoke the command installation
exits if they are installed. The exit on the issuing system handles the ROUTE part
of the command; the command installation exit on the receiving system processes
the command that ROUTE specifies.

For complete syntax information on the ROUTE command, and for the list of
commands you should not route to multiple systems, see z/OS MVS System
Commands.

The aggregated command response is logged on the system that processes the
ROUTE *ALL or ROUTE systemgroupname command. This aggregated response is
seen by the same system’s MPF exits or user exits, and can be automated. The
system that processes the ROUTE command is the system where the ROUTE
command is issued, unless the ROUTE command was transported using CMDSYS
(command association) or CPF (command prefix facility). The responses to the
individual command that is imbedded inside of ROUTE *ALL or ROUTE
systemgroupname are logged on the systems where the command is processed.
The individual responses are seen by each target system’s MPF exits or user exits,
and can be automated. While the aggregated command response is logged with the
issuing console’s name, each individual response is logged with a system
generated console name.

Setting up a System Group Name

You can define groups of systems to MVS by placing a list of systems in ECSA,
and addressing the list using the name/token services. A ROUTE command that
specifies the name of this group will cause a command to be routed to all active
systems in the group.

For more information on setting up name/token pairs, see z/OS MVS Programming:
Authorized Assembler Services Guide.

The program that creates the list can be set up in PROCLIB, and can be run on
each system in a sysplex at IPL using a START command in a COMMNDxx parmlib
member. For ease of use, the COMMNDxx parmlib member can be shared by all
systems.

To define a new or changed set of named system groups on all systems in the
sysplex, use the command ROUTE *ALL,START jobname, where jobname is the
name of the procedure that runs the program that creates or deletes the groups.

IBM provides a SYS1.SAMPLIB member to define named system groups.

For more information, see the comments in SYS1.SAMPLIB member IEEGSYS.

Using the Command Prefix Facility
The MVS command prefix facility (CPF) allows a subsystem (like JES2 or DB2) to
create unique command prefixes for each copy of the subsystem in the sysplex and
control which systems can accept the subsystem commands for processing. For
example, using the JES2 CONDEF initialization statement, an installation can define
a JES2 command prefix with sysplex scope. No matter which system an operator
uses to enter the JES2 command, MVS can recognize the prefix and direct the
command to the system where the prefix has been defined.

110 z/OS V1R3.0 MVS Planning: Operations

For information on the JES2 initialization statement that uses the command prefix
facility, see z/OS JES2 Initialization and Tuning Reference. For information on the
CPF macro that other subsystems or application programs can use to issue
commands in a sysplex, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Defining a System Name as a Command Prefix
You can run IEECMDPF (an IBM-supplied sample program in SYS1.SAMPLIB) to
define the system name as a command prefix that substitutes for the ROUTE
command on each system.

For example, if you run IEECMDPF on system S01, then the following have the
same effect on each system in the sysplex:

ROUTE S01,command
S01 command
S01command

Note: If the system name does not define a valid system, ROUTE name
processing does not return an error message.

In a sysplex, if you put a START command into a common COMMNDxx Parmlib
member, you could have a short-form ROUTE function for each system in the
sysplex. Then from any system in the sysplex, any of the following would route a
command to system S02:

ROUTE S02,command
S02 command
S02command

Using the L=Operand on Certain Commands
The L= operand on an MVS command (like CONTROL, DISPLAY, and MONITOR)
allows an operator to specify a console name (or console id) for a console defined
on a different system in the sysplex. Sysplex services can route the command to
the system where the console is attached. For syntax of CONTROL, DISPLAY, or
MONITOR, see z/OS MVS System Commands.

Sharing System Commands By Using System Symbols
MVS allows two or more systems in a multisystem environment to share commands
while retaining unique values in those commands. When two or more systems
share commands, you can view a multisystem environment as a single system
image from which you can perform operations for several different systems.

This section explains how to plan for sharing system commands in a multisystem
environment. It:

v Describes what system symbols are, and explains how they are used to
represent the unique values in shared commands

v Describes what wildcards are, and explains how they are used to identify multiple
resource names in commands

v Provides planning tasks for sharing system commands

v Provides tips for sharing commands in a multisystem environment.

For information about using system symbols in system commands, including lists of
system symbols that the system provides, see z/OS MVS System Commands.

Chapter 3. Managing Messages and Commands 111

What Are System Symbols?
System symbols represent the values in shared commands that are unique on
different systems. Each system defines its own values for system symbols; it
replaces the system symbols with those values when it processes shared
commands.

For detailed information about system symbols, including lists of system symbols
that you can specify in system commands, see the section on system symbols in
z/OS MVS Initialization and Tuning Reference.

What Are Wildcards?
Wildcards are characters that indicate a command applies to all resources whose
names match a specified character string.

The asterisk (*) wildcard tells the system to match zero or more specified
characters, up to the maximum length of the string. An asterisk can start the
character string, end it, appear in the middle, or appear in multiple places in the
string. A single * for the name indicates that all resource names for the particular
field are to match.

For some values, the * must be a suffix and cannot appear alone. See z/OS MVS
System Commands for examples of how to use wildcards in system commands.

Planning to Share System Commands
When planning to share system commands among different systems, ask yourself
the following questions:

1. What resources are good candidates for sharing?

If your goal is to greatly simplify your operating environment, the answer is: As
many as possible! If two or more systems require different names for a
resource, chances are that you can use a single system symbol to represent the
characters in the name that must be unique. If you have one “skeleton” that
represents the unique names, you have one convenient place to maintain the
resource definition. If you follow the same process with all commands that
require unique values, you can view a multisystem environment as a single
system image with one point of control.

Be aware that there are also reasons why you might not want to share certain
commands. Perhaps the release level of MVS prevents you from using a
resource on a particular system; or perhaps one or more systems do not require
a particular resource. Whatever the case, your installation must examine the
commands that are issued frequently and determine the extent to which they
can be shared.

2. What commands support system symbols?

All MVS/ESA SP 5.2 commands support system symbols, with the exception of:

v The LOGON command

v The VARY CN(*),ACTIVATE form of the VARY command (all other forms of
VARY support system symbols).

3. Do I want a job to have different names on each system where it runs?

If a job runs on two or more systems in a multisystem environment, IBM
recommends that you use different jobnames for each instance of the job.
Different jobnames allow you to easily identify the system on which a job runs.

The best way to explain how to use one command to start jobs with different
names on different systems is through an example. Suppose your installation is
to start Customer Information Control System (CICS) on each system in a
sysplex and assign a different jobname to each instance of CICS. First your

112 z/OS V1R3.0 MVS Planning: Operations

installation establishes a consistent naming convention for the instances of
CICS. For example, the jobname for each instance of CICS always begins with
the characters CICS and ends with the last four characters of the system name.

You can specify the &SYSNAME system symbol in the START command and
route the command to all systems that require CICS:
ROUTE *ALL S CICS,JOBNAME=CICS&SYSNAME.,...

Each system substitutes the text it has defined to &SYSNAME into the
command text. Assuming that you route the START CICS command to two
systems named SYS1 and SYS2, the following commands result:

S CICS,JOBNAME=CICSSYS1,...
S CICS,JOBNAME=CICSSYS2,...

Your installation can also specify system symbols in commands that are entered
at system initialization using the COMMNDxx parmlib member. See the
description of the COMMNDxx parmlib member in z/OS MVS Initialization and
Tuning Reference for information about how the system processes system
symbols in COMMNDxx.

Sharing Commands that Flow Through Multiple Systems: When you specify
system symbols in commands that flow through several systems in a multisystem
environment, the target system almost always substitutes text for the system
symbols in the command text. This is true for the main ways to route commands to
other systems:

v The CMDSYS keyword in CONSOLxx, which allows operators to enter
commands from a console and have the commands automatically routed to
another system for processing. The command is first transported to the system
that has command association to the system on which the command is entered;
then substitution takes place. See “Using CMDSYS on the CONSOLE Statement”
on page 109 for more information.

v A CPF prefix, which allows operators to send commands to a system in a
sysplex for which a unique prefix is defined. If a command has a CPF-defined
prefix, the command is first transported to the system that has the prefix; then
substitution takes place. See “Using CMDSYS on the CONSOLE Statement” on
page 109 for more information.

v The ROUTE command, which allows operators to send commands to other
systems for processing. The command is first routed to the other system; then
substitution takes place. See “Using the ROUTE command” on page 109 for
more information.

If a command is entered on one system, and the command affects an entity (such
as a console) on another system, the target system almost always substitutes text
for the system symbols in the command text. The DUMPDS, REPLY, and ROUTE
commands have exceptions to these rules. See the descriptions of those
commands in z/OS MVS System Commands for more information.

For example, suppose the following command changes the routing codes for a
console on a different system from which the command is entered:
VARY CN(consname),ROUT=&SYSVAR1.

If the value of &SYSVAR1 is (1,2) on the system where the command was issued,
and &SYSVAR1 is (3,4) on the system where the console consname is attached,
the result of the system symbol substitution is:
VARY CN(consname),ROUT=(1,2)

Chapter 3. Managing Messages and Commands 113

For commands that accept the L=cca keyword, which specifies that the command
output messages are to be directed to a different console, the system on which the
command is entered substitutes text for system symbols in the command text (not
the system where the L=cca console is attached).

MPF and MVS Operations Planning
The message processing facility (MPF) controls message processing for an MVS
system. It controls the following:

v Message presentation (the color, intensity and highlighting, of messages) for an
MCS or SMCS console

v The suppression of messages

v The retention of messages for the action message retention facility

v The selection of messages for automation programs like NetView

v Message processing exits other than IEAVMXIT that gain control when certain
messages are issued

v Command installation exits that gain control when commands are issued

You can specify presentation options, message retention, message suppression,
selection of messages by an automation program, and user exit information in the
MPFLSTxx Parmlib member.

Specifying MPFLSTxx members
At IPL, the system uses the MPFLSTxx member or members indicated on the MPF
keyword on the INIT statement in CONSOLxx. You can specify multiple MPFLSTxx
members on the MPF keyword. In a sysplex, MPF processing has system scope;
thus, you must plan MPF processing on each system in the sysplex.

Using multiple members allows your installation to define separate MPF members
to handle specific message processing functions for messages. For example, you
might specify two members of MPFLSTxx to handle different automation
procedures. Or you might have one MPFLSTxx member handle messages for
suppression and another to handle messages for automation for a system. (Note
that the system default allows the system to consider all messages as eligible for
automation.) Operators can use the SET MPF command to activate these members
as needed (for example, during shift changes or for workload balancing).

If you do not have an active MPFLSTxx member:

v Default options for message presentation are in effect (all messages are eligible
for automation).

v The action message retention facility, if it is active, retains all action messages
(those with descriptor codes 1, 2, 3, 11, and WTOR messages).

v MPF does not suppress messages.

v No installation exit except IEAVMXIT can gain control to process messages.

MPF Options
Use the following keyword on the INIT statement of CONSOLxx to activate the
MPFLSTxx member or members at your installation:

MPF Specifies whether you want to activate the message processing facility at
your installation.

You can specify one or more 2-character suffixes for the MPFLSTxx members you
want to activate at IPL, or NO, in which case, MPF is not active. MPF(NO) is the
default. Operators can use the SET MPF command to change the status of MPF.

114 z/OS V1R3.0 MVS Planning: Operations

The following sections contain information about options you control in MPFLSTxx:

v For presentation options, see “Specifying Message Presentation”

v For message suppression options, see “Suppressing Messages”

v For message retention options, see “Retaining Messages” on page 116

v For message automation options, see “Selecting Messages for Automation” on
page 119

v For message and command processing exits, see “Installation Exits for
Messages and Commands” on page 121.

Specifying Message Presentation
Using MPFLSTxx and installation exits, you can control how you want messages to
be presented on console screens. You can control color for messages, how you
want to highlight messages, or specify the intensity of messages to make them
stand out on the screen.

To specify color, highlighting, and intensity for messages, you can use the following
statement in MPFLSTxx:

.MSGCOLR Controls message presentation

Options that you can use for .MSGCOLR are as follows:

msgarea Allows you to specify color, highlighting, and intensity for message
displays

DEFAULT Specifies that you want to use the IBM supplied defaults for color,
highlighting, and intensity for message displays

NOCHANGE Specifies that you want to use the values for color, highlighting, and
intensity established in the previous MPFLST member in effect;
NOCHANGE is the default.

Various values for msgarea allow you to specify color, highlighting, and intensity for
the entry area, for different message types or descriptor codes (action messages or
WTOR messages, for example), for control lines or data lines, for status displays,
and other screen controls.

z/OS MVS Initialization and Tuning Reference contains complete information about
IBM defaults for color, highlighting, and intensity in MPFLSTxx.

You can further control color, highlighting, and intensity through installation exits like
IEAVMXIT or other exits that your installation can define. You can change the
message presentation information (color, highlighting, and intensity) for the console
through a parameter list (CTXT) passed to the message processing exit. In the exit,
you can modify specific fields in CTXT that control color, highlighting, and intensity.

z/OS MVS Installation Exits contains complete information about IEAVMXIT.

Suppressing Messages
For a multisystem environment like a JES3 complex or a sysplex, the large volume
of messages produced by various systems makes message suppression an
important part of your operations planning. But even for a single system, IBM
recommends that you suppress informational messages that the operator does not
need to see to manage the system.

Chapter 3. Managing Messages and Commands 115

Suppressed messages do not appear on any console; however, they do appear on
the hardcopy log. If you use MPF to suppress messages, the hardcopy log must be
active.

Message suppression is also important when you plan automation for an
installation. The goal of automated operations is to streamline message flow and
simplify operator actions at a console. Suppressing messages operators do not
need to see is a good way to start your MVS automation planning. In a sysplex
environment, NetView can make use of extended MCS consoles to help manage
message automation for any system in the sysplex. For more information about
automated operations, see NetView Automation: Planning.

Note that if you specify a message for automation and suppression using MPF, you
can still deliver the message to an extended MCS console for display. When you
activate the extended MCS console with the automation attribute, you allow the
console to receive automated messages whether MPF indicates that the message
is suppressed or not.

Through the MPFLSTxx Parmlib member, you can specify which messages the
system is to suppress. Using the msgid parameter with the SUP option, you can
select certain messages for suppression, or specify suppression for all messages.
For further information about MPFLSTxx and examples of the kinds of messages
your installation might decide to suppress, see z/OS MVS Initialization and Tuning
Reference.

Using MPFLSTxx, you can select messages to suppress from display. To select
messages for suppression using MPFLSTxx, you can use the following MPFLST
parameter and its option:

msgid Specifies the id or list of ids for messages that you want to suppress

The option you can specify for the msgid is as follows:

SUP Specifies whether you want to suppress the message(s) identified by msgid
for display; SUP(YES) is the default. SUP(NO) indicates that you do not
want to suppress the message(s) for display. You can use SUP(YES) to
suppress messages that are command responses.

z/OS MVS Initialization and Tuning Reference gives examples of the kinds of
messages your installation might decide to suppress.

Retaining Messages
If your installation produces large volumes of messages for operators to monitor, it
is a good idea to use the action message retention facility (AMRF). If you want
operators to be able to retrieve action messages and WTOR messages that no
longer appear on the console, use AMRF. AMRF keeps action messages so that the
operator has a chance to see them at a later time. WTOR messages are always
available for operator retrieval regardless of the state of AMRF.

Action Message Retention Facility
During initialization, the system starts AMRF if it is specified in CONSOLxx. Use the
following keyword on the INIT statement of CONSOLxx to control the action
message retention facility:

AMRF Specifies whether you want to activate the action message retention facility.

116 z/OS V1R3.0 MVS Planning: Operations

AMRF(Y) means you want to activate the action message retention facility and is
the default. If you specify AMRF(N), AMRF is not active.

Unless you code otherwise in MPFLSTxx, AMRF retains in a buffer area all action
messages, those messages with descriptor codes 1, 2, 3, and 11, and WTOR
messages.

AMRF works as follows. When the operator has performed the action required by a
message displayed on the screen, the system deletes the message, or the operator
can use the CONTROL C command to delete the message. If AMRF is active,
operators can remove action messages from the screen, then retrieve them in their
entirety later by using the DISPLAY R command.

In a sysplex, it is recommended that you use AMRF. The AMRF keyword has
sysplex scope.

Using MPF to Retain Messages
You can also control which action messages to retain through MPFLSTxx. Thus,
you can specify on a message by message basis which messages you want the
action message retention facility to retain or not. First, ensure that both MPFLSTxx
and AMRF are active (either specified on the INIT statement of CONSOLxx or
through the operator SET command). With MPF, you can only retain action
messages (those with descriptor codes 1, 2, 3, and 11).

To specify which messages you want to retain or not in MPFLSTxx, you can use
the following parameter and its option:

msgid Specifies the id or list of ids for messages that you want to
suppress or retain

The option you can specify for the msgid is as follows:

RETAIN Specifies whether you want to retain the message(s) identified by
msgid.

RETAIN(YES) is the default. RETAIN(NO) indicates that you do not want the system
to retain the action message. Thus, with MPF you can indicate which action
messages that AMRF retains you do not want to keep for retrieval.

Displaying Information About Messages Awaiting Action
The DISPLAY R command allows an operator to display all outstanding action
messages or a subset of these messages. For example, to display all the
outstanding action messages at a console, an operator enters DISPLAY R,M; to
display all the outstanding critical eventual action messages (descriptor code 11),
an operator can enter DISPLAY R,CE.

In a sysplex, the best way to describe how to use the DISPLAY R command is
through an example. Assume a sysplex has the following identifiers:
SY1 System 1 in the sysplex
SY2 System 2 in the sysplex
SY3 System 3 in the sysplex
MASTER MCS master console attached to SY1
ACCT MCS console attached to SY2
MSGS MCS console attached to SY3
TAPE MCS console attached to SY1. The console is controlling the tape

Chapter 3. Managing Messages and Commands 117

library and has an MSCOPE(*) specified. MSCOPE(*) limits the
messages the console receives to SY1, the system to which it is
locally attached.

The example assumes that the AMRF is active on all systems in the sysplex.

Operators can do the following:

v To see the texts and identification numbers of all outstanding action messages
and WTORs destined for MASTER, enter the following command at MASTER:
DISPLAY R,M

v To learn the number of outstanding action messages with routing codes assigned
to MASTER, enter the following command at MASTER:
DISPLAY R,ROUT=ALL

The message includes the total of outstanding action messages for all systems in
the sysplex (SY1, SY2, and SY3) that are routed to MASTER.

v To see all outstanding action messages in the sysplex, enter the following
command at MASTER, ACCT, or MSGS.
DISPLAY R,M,CN=(ALL)

The message includes the total of outstanding action messages for all systems in
the sysplex (SY1, SY2, and SY3). AMRF has sysplex scope; if another system
joins the sysplex, the action message retention facility is active no matter what is
specified for AMRF on the INIT statement in CONSOLxx for that system.

v To see all outstanding action messages for the local application running on SY1,
enter the following command on TAPE:
DISPLAY R,M

MSCOPE limits the message information in the sysplex that TAPE receives to
SY1.

Grouping Messages by Function: To help you keep track of messages, your
application programmer can also group and name messages by function. When
AMRF is active, the WTO macro in MVS allows programs to associate a 1 to 8
alphanumeric character or “keyname” with certain messages. Operators on an MCS
console can use the KEY operand on the DISPLAY R command to display all the

SY1
AMRF(YES)

SY2
AMRF(YES)

SY3
AMRF(YES)

MASTER

ACCT

TAPE

MSGS

(tape library)
MSCOPE(*)

118 z/OS V1R3.0 MVS Planning: Operations

outstanding action messages by keynames. For example, if an application
programmer assigned the characters “PAYROLL” to all payroll application
messages, an operator can list all the outstanding messages for payroll messages
by entering the following command from an MCS console in the system or sysplex:
DISPLAY R,M,KEY=PAYROLL

In a sysplex, you can control the scope of these messages using MSCOPE.

JES3 generally uses the dynamic support program (DSP) names as keynames to
group messages by function. For information on available JES3 DSPs, see z/OS
JES3 Commands.

Reference
For information on the MVS DISPLAY command, see z/OS MVS System
Commands.

Selecting Messages for Automation
Using MPFLSTxx you can specify that an automation program like NetView use
messages to automate certain system or operator actions on MVS.

Use the following parameter and its option in MPFLSTxx to specify an automation
program like NetView:

msgid Specifies the id or list of ids for messages that you want to select for
automation

The option you can specify for the msgid is as follows:

AUTO Specifies whether you want the automation program at your
installation to handle the message(s) identified by msgid for
automation

If you do not specify an MPFLSTxx member, all messages are eligible for
automation. AUTO(YES) or AUTO(token) indicates that you want to use an
automation program to process the message or messages. If you have defined an
extended MCS console with the automation attribute, the console can receive any
message that MPF has specified for automation from any system in the sysplex.
See “Directing Messages that Are Eligible for Automation to Extended MCS
Consoles” on page 108.

If a message has been specified for automation in MPFLSTxx, you can reissue the
message with a descriptor code 13 from a message processing exit. Reissuing a
message specified for automation might be useful in a sysplex where the message
does not need to be automated on every system in the sysplex.

Reference
For information on using NetView to plan the automation of messages, see
NetView Automation: Planning.

Chapter 3. Managing Messages and Commands 119

Automation in a Sysplex
Because the sysplex affects the way you use consoles to receive messages or
send commands, you need to consider how sysplex functions can affect
automation. Consider the following in a sysplex:

Console definitions

Console names for MCS, SMCS, and extended MCS consoles allow automation
products like NetView to reference consoles throughout the sysplex regardless of
their system attachment. The names must be unique for each console in the
sysplex. (See “Using Console Names” on page 40.)

You can define extended MCS consoles to handle message and command
processing as part of your automation in a sysplex. In a system or sysplex, defining
extended MCS consoles allows you to exceed the 99-console limit for MCS and
SMCS consoles. (See “Extended MCS Consoles” on page 6.)

Logging activity

Because the impact on hardcopy logging for systems in a sysplex is increased,
analyzing the results of message and command logging for a sysplex becomes
more complex than for a single system. For example, a message received on one
system might have originated on another system where it has already been logged.
How a system issues a command in a sysplex can affect how other systems log
command responses. See “Message and Command Flow in a Sysplex” on page 98.

Understand that defining more consoles in a system or sysplex means that more
hardcopy logging can occur. For extended MCS consoles in a sysplex, you can
specify LOGCMDRESP=NO through RACF OPERPARM or on the MCSOPER
macro to control logging for the console. As a result, command responses are not
logged for the extended MCS console, and you can reduce the impact of hardcopy
logging in the sysplex.

Note: LOGCMDRESP=NO will control logging only for messages issued by
authorized programs. Messages issued by unauthorized programs are
always logged.

Parmlib

Because CONSOLxx and MPFLSTxx are crucial to control message and command
processing, you must define these Parmlib members so that they work together for
all systems in a sysplex. For example, console attributes defined in CONSOLxx
have either system or sysplex scope. As a result, these differences can affect
console operations in the sysplex. MPFLSTxx has system scope so you must
consider how differences in MPFLSTxx for each system might affect overall
operations in the sysplex. (See “Using CONSOLxx” on page 14 and “MPF and MVS
Operations Planning” on page 114.)

Message and command processing

In a sysplex, you need to consider the scope of your message and command
processing. Messages and commands can flow from system to system. In order to
coordinate automation functions for the entire sysplex, automation products on
different MVS systems need to take this message and command flow into account.
(See “Message and Command Flow in a Sysplex” on page 98.)

120 z/OS V1R3.0 MVS Planning: Operations

Installation exits for messages and commands must also take into account
message and command routing in a sysplex. Although messages and commands
can be routed to different systems in a sysplex, you must take into account where
the message or command is issued, the systems that receive the message or
command, how and when the exits get control, and when automation programs
receive the message or command. These considerations can have an impact on
how an automation program like NetView processes messages and commands that
first pass through installation exits. (See “Installation Exits for Messages and
Commands” and “Message and Command Flow in a Sysplex” on page 98.)

Installation Exits for Messages and Commands
MVS provides installation exits to allow further processing of messages and
commands. Whenever these exits are active and the system issues a message, or
an operator or program issues a command, the exits get control to process the
message or command. For messages, MVS provides IEAVMXIT, which allows you
to tailor your messages. You can also install your own message processing exits as
needed. For commands, MVS provides the command installation exit that can
accept, modify, or reject commands before the command processor for the
command gets control.

Allocation exits can get control whenever the system issues WTOR messages to
operators to cancel a waiting job, bring a device online, or allow a job to wait.
These exits allow an installation to automate responses to the messages. For more
information on allocation exits, see z/OS MVS Installation Exits.

IEAVMXIT and Message Processing
The message processing installation exit IEAVMXIT can gain control when any
WTO or WTOR message is issued. In this exit, you can change routing codes,
descriptor codes, and message texts and perform other message processing; you
can also override the message processing facility (MPF).

If you do not code your own message processing exit, IEAVMXIT is available, and,
if active, gets control when the system issues a WTO or WTOR message. If you
specify your own message processing exit through MPFLSTxx, that exit gets control
instead of IEAVMXIT. See “Message Processing Exits other than IEAVMXIT” on
page 122.

To specify that you want to activate IEAVMXIT, use the following keyword on the
INIT statement of CONSOLxx:

UEXIT Defines whether you want the installation exit IEAVMXIT to process
messages

UEXIT(Y) is the default; if you do not code this parameter, IEAVMXIT will be
activated if it’s installed. Operators can use CONTROL M to change the status of
IEAVMXIT.

To have the user exit IEAVMXIT inactive at IPL, code the following parameter on
the INIT statement:
UEXIT(N)

Chapter 3. Managing Messages and Commands 121

Reference
z/OS MVS Installation Exits describes IEAVXIT in detail and provides a
sample exit.

Message Processing Exits other than IEAVMXIT
Use the following parameter and its option in MPFLSTxx to specify an
installation-defined message processing exit other than IEAVMXIT:

msgid Specifies the id or list of ids for messages that you want the exit to process

The option you can specify for the msgid is as follows:

USEREXIT Specifies the name of the installation supplied exit to handle
messages identified by msgid

The exit gets control whenever the system issues the message or messages
identified by msgid. If you do not supply an exit name, the system uses the
IEAVMXIT, if it exists and is active.

Command Installation Exits
Using MPFLSTxx, you can specify MVS command installation exits to modify
commands that an operator can issue at a console. You can authorize a console to
use a specific command or commands, reject the command, direct the command to
specific consoles for display, modify the command text, or execute the command in
the exit.

Use the following parameter and its option in MPFLSTxx to specify command
installation exits:

.CMD Specifies the statement that allows you to specify up to six
command installation exits

The option you can specify for the .CMD is as follows:

USEREXIT Specifies from 1 to 6 names for command installation exits.

If you code USEREXIT but do not supply an exit name, the system issues a syntax
error message.

See z/OS MVS Installation Exits for a detailed description of the command
installation exit and a sample exit.

Considerations for a Sysplex: In a sysplex, when an operator uses the ROUTE
command to direct a command to execute on a different system and the command
installation exits are installed on both systems, both systems invoke the command
installation exits. The exit on the issuing system handles the ROUTE part of the
command; the command installation exit on the receiving system processes the
command that ROUTE specifies. To understand the effect command routing in a
sysplex has on the installation exits, see “Commands in a Sysplex” on page 101.

The exit changes the console authority of a console only to permit the console to
enter the specified command or commands coded in the exit. The original AUTH
attribute of the console is still in effect and determines the ability of the console to
enter any other command. Note that RACF command profiles, if specified, override
command authorization in the command authorization exits.

122 z/OS V1R3.0 MVS Planning: Operations

In a JES3 complex, use the JES3 exit IATUX18 to process JES3 commands and
the MVS command installation exit to process MVS commands. For information on
JES3 exits, see z/OS JES3 Customization.

Considerations for System Symbols: When a command contains system
symbols, MVS provides the command text to command installation exits after it
substitutes text for the system symbols. For example, if the following command is
entered to display a console group on system SYS1:
DISPLAY CNGRP,G=(C1GP&SYSNAME.)

The command installation exit receives the following text:
DISPLAY CNGRP,G=(C1GPSYS1)

If a command installation exit requires the original command text (the one that
existed before symbolic substitution), the exit can access the CMDXOLIB field in
the command installation exit routine parameter list (CMDX). See z/OS MVS Data
Areas, Vol 1 (ABEP-DALT) for a mapping.

Note: Do not use command installation exits to add or change system symbols in
command text. The system cannot substitute text for system symbols that
are added or changed through those exits.

See the section on sharing system commands in z/OS MVS System Commands for
more information about using system symbols in commands.

Controlling WTO and WTOR Message Buffers
MVS places WTO and WTOR buffers in virtual storage. You can control the number
of buffer areas for WTO and WTOR messages at your installation by using
CONSOLxx.

To specify buffers for WTO and WTOR messages, use the following keywords on
the INIT statement of CONSOLxx:

MLIM Defines the maximum number of buffers the system uses for writing
WTO messages; the default is 1500.

RLIM Defines the maximum number of buffers the system uses for writing
WTOR messages; the default is 10 for a single system. For a
sysplex, see the following description for RMAX.

z/OS MVS Initialization and Tuning Reference provides the range of values for
MLIM and RLIM. You should use an MLIM value for WTO messages that is
significantly larger than the RLIM value for WTOR messages.

Controlling Reply IDs for WTOR Messages
Operators use an ID on the REPLY command to respond to WTOR messages. In
CONSOLxx, you can also specify the maximum number (RMAX) for reply IDs to a
WTOR message.

To specify the RMAX value, use the following keyword on the DEFAULT statement
of CONSOLxx:

RMAX Defines the maximum number of reply ids. The default is 99.

z/OS MVS Initialization and Tuning Reference provides the range of values for
RMAX.

Chapter 3. Managing Messages and Commands 123

Notes:

1. Set a value of 9999 for the RMAX parameter on the DEFAULT statement in the
CONSOLxx parmlib member (if possible) for optimal performance.

2. When a sysplex is configured with a MAXSYSTEM value greater than 8, reply
IDs are no longer assigned in strict sequential order. Instead, systems obtain
groups of reply IDs for assignment to WTORs, and the ids might not be
assigned in sequential order. This change requires no coding changes on the
installation’s part, but might surprise an operator. You should consider informing
operators of this change.

RLIM and RMAX Values
The relationship between RLIM and RMAX values in your sysplex can help you
plan for WTOR messages and operator replies. In a sysplex, the first system to join
sets the RMAX value, which has sysplex scope. If you do not specify RLIM, the first
system to join the sysplex sets RLIM to the value of RMAX.

In a sysplex running JES2, when XCFLOCAL is set, the sysplex runs without a
couple data set and systems cannot join or use the services of the sysplex. In both
these situations, the RLIM default of 10 is used, if no RLIM value is specified,
regardless of what is set for RMAX.

Reply IDs and RMAX
The RMAX value determines the maximum number of reply IDs that an operator
can use to respond to WTOR messages. Using the short form of the JES2 REPLY
command, the operator can omit the comma, but the system might misinterpret the
command depending on the RMAX value. For example, if RMAX is 99, and the
operator enters the following:
103NONE

MVS interprets the command as follows:
R 10,3NONE

Using the JES3 form of the REPLY command, an operator must use a comma to
separate the reply ID from the command text:
5,NONE

Controlling Automatic Ending of Multi-line WTO Messages
If a program issues a multi-line WTO message but does not end the message by
issuing an endline, the target console might stop receiving message traffic. The
system will detect this condition and end the message automatically.

To end a multi-line WTO message when it detects that no data line or endline has
been issued for the message after an interval of 30 seconds, the system issues the
following endline:
MESSAGE TIMED OUT - MESSAGE COMPLETION FORCED

The default interval is 30 seconds. You can control the length of the interval by
using AMASPZAP or IGWSPZAP to set a value from X'0001' to X'FFFF' (1 second
to 65,535 seconds). To update the time interval, run either AMASPZAP or
IGWSPZAP with the following statements:
++USERMOD(MYMOD) /* USERMOD name of your choice */
++VER(Z038) FMID(HBB5510) /* FMID level of your system */
++ZAP(IEECVUCM).

124 z/OS V1R3.0 MVS Planning: Operations

NAME IEANUC01 IEEUCMC
VER 00F8 001E /* changing default of 001E (30) seconds */
REP 00F8 002D /* to 002D (45) seconds */

Aggregating Messages Returned to the ROUTE Command
If an operator routes a command to more than one system, the command
responses returned to the originating console can be very confusing if they are
simply presented at the console in the order they are received. To help avoid the
confusion, MVS collects the messages so they can be presented in a more
readable format on the console. This is called an “aggregated response”. The
messages that are aggregated are sorted in alphabetical order by system name.

If some messages arrive too late to be aggregated, MVS first displays the name(s)
of the system(s) from which messages have not arrived in time, then displays the
aggregated messages. Any messages that are not aggregated are displayed singly
on the console, as they arrive.

By default, MVS waits as long as 30 seconds before displaying aggregated
messages. However, MVS doesn’t always make the operator wait the maximum
time. MVS displays the aggregated messages a short time after receiving at least
one response from each system to which the command was routed.

By default, the maximum amount of time that MVS waits for messages before
aggregating them is 30 seconds. You can change this maximum wait time as
follows:

v Specify the ROUTTIME parameter on the INIT statement in CONSOLxx. This
affects the entire sysplex.

v Change the current ROUTTIME value by entering the CONTROL M command.
This affects the entire sysplex.

v Request a one-time routing time interval by entering the T= operand on the
ROUTE command itself. This affects only the ROUTE command on which it is
specified.

Command responses are aggregated if:

v The command responses are received within the timeout period.

v The command responses are identified with console IDs.

Note: If, when issuing a command response, a command processor does not
use the console ID of the command issuer, MVS cannot return an
aggregated command response to the ROUTE command issuer.

Command responses received after the timeout period are not aggregated. MVS
attempts to send them back to the originator.

Note: If the current ROUTTIME value is 0, or if T=0 is specified on the ROUTE
command, no messages are aggregated; they are presented at the
originating console as they are received.

Appearance of Aggregated Messages
The following examples illustrate how MVS aggregates command responses. In
these examples, the command responses are returned to an out-of-line area on the
console. The sysplex has three systems, named SYS1, SYS2, and SYS3.

Example 1: Comparison of Aggregated and non-Aggregated Messages

Chapter 3. Managing Messages and Commands 125

The following two panels use the D T command (DISPLAY TIME) to show how
command responses are aggregated.

The following panel shows several uses of the D T command without aggregation of
command responses:

- SYS1 d t
«A¬ SYS1 IEE136I LOCAL: TIME=09.59.49 DATE=1993.257 GMT: TIME=13.59.49

DATE=1993.257
- SYS1 ro sys2,d t

«B¬ SYS2 IEE136I LOCAL: TIME=10.00.21 DATE=1993.257 GMT: TIME=14.00.21
DATE=1993.257

- SYS1 ro t=0,*all,d t
«C¬ SYS1 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59

DATE=1993.257
SYS3 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59
DATE=1993.257
SYS2 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59
DATE=1993.257

IEE612I CN=MASTER1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

«A¬ The D T command is issued and processed on SYS1.

«B¬ The D T command is issued on SYS1 and routed to SYS2 for processing.

«C¬ The D T command is issued on SYS1 and routed to all systems (SYS1,
SYS2, and SYS3) for processing. To ensure that responses are not
aggregated, T=0 is specified.

The following panel shows the difference between non-aggregated and aggregated
command responses:

SYS2 IEE136I LOCAL: TIME=10.00.21 DATE=1993.257 GMT: TIME=14.00.21
DATE=1993.257

- SYS1 ro t=0,*all,d t
«A¬ SYS1 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59

DATE=1993.257
SYS2 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59
DATE=1993.257
SYS3 IEE136I LOCAL: TIME=10.00.59 DATE=1993.257 GMT: TIME=14.00.59
DATE=1993.257

- SYS1 ro t=5,*all,d t
«B¬
IEE421I RO *ALL,D T FRAME LAST F E SYS=SYS1
SYSNAME RESPONSES ---
SYS1 IEE136I LOCAL: TIME=10.06.48 DATE=1993.257 GMT:

TIME=14.06.48 DATE=1993.257
SYS2 IEE136I LOCAL: TIME=10.06.48 DATE=1993.257 GMT:

TIME=14.06.48 DATE=1993.257
SYS3 IEE136I LOCAL: TIME=10.06.48 DATE=1993.257 GMT:

TIME=14.06.48 DATE=1993.257

IEE612I CN=MASTER1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

«A¬ The D T command is issued on SYS1 and routed to all systems (SYS1,

126 z/OS V1R3.0 MVS Planning: Operations

SYS2, and SYS3) for processing. With T=0 specified on the ROUTE
command, responses to D T from the three systems are not aggregated.

«B¬ Again, the D T command is issued on SYS1 and routed to all systems
(SYS1, SYS2, and SYS3) for processing. With T=5 specified on the ROUTE
command, responses to D T from the three systems are aggregated. In this
example, the aggregated messages are shown in highlighted text. Note
how the responses in the T=5 response are formatted as compared to the
T=0 response.

Example 2: Another Sample Aggregation of Command Responses

The following two panels use a very short timeout interval (T=1) to show how
non-aggregated responses are handled.

«A¬
- SYS1 ro t=1,*all,v 414,offline

«B¬
IEE421I RO *ALL,V 414,OFFLINE FRAME 1 F E SYS=SYS1
NO RESPONSE RECEIVED FROM THE FOLLOWING SYSTEM(S):
SYS2

IEE612I CN=MASTER1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

«A¬ The ROUTE command is used to try to vary device 414 offline on all
systems. A timeout interval of 1 second (T=1) is specified on the ROUTE
command.

System SYS2 does not respond within one second. Therefore MVS cannot
include the command response from SYS2 in the aggregated response.

«B¬ MVS lists the systems from which no response was received in time for
aggregation. In this case, only SYS2 is listed, under NO RESPONSE RECEIVED
FROM THE FOLLOWING SYSTEM(S):. This output is in FRAME 1 of message
IEE421I.

Chapter 3. Managing Messages and Commands 127

- SYS1 ro t=1,*all,v 414,offline
«C¬
- SYS2 IEF281I 0414 NOW OFFLINE

«D¬
IEE421I RO *ALL,V 414,OFFLINE FRAME LAST F E SYS=SYS1
SYSNAME RESPONSES ---
SYS1 IEF281I 0414 NOW OFFLINE
SYS3 IEE303I 0414 OFFLINE

IEE612I CN=MASTER1 DEVNUM=03E0 SYS=SYS1 CMDSYS=SYS1

IEE163I MODE= RD

«C¬ MVS displays the non-aggregated command response from SYS2. The time
when the non-aggregated messages appear does not depend on when the
operator scrolls to the second frame of message IEE421I.

«D¬ After the operator scrolls forward to the second (and last) frame of message
IEE421I, MVS displays the aggregated messages.

Controlling Write-to-Log (WTL) Message Buffers
You can specify the number of buffers that the system uses to write messages to
the hardcopy log. To specify the number of write-to-log (WTL) message buffers, use
the following keyword on the INIT statement of CONSOLxx:

LOGLIM Defines the number of WTL buffers that the system uses.

Ensure that your installation has enough storage for the LOGLIM buffers. z/OS
MVS Initialization and Tuning Reference provides the range of values for LOGLIM
and provides examples.

Handling Translated Messages
The MVS message service (MMS) enables your installation to use message files for
message translation. MMS substitutes a message translated into a different
language for the U. S. English equivalent message. If MMS is active, authorized
users of extended MCS consoles on TSO/E can select available languages for
message translation and receive translated messages on their screens. Application
programs can also use MMS to handle translation of messages. Depending on how
the installation displays the messages, users can receive those translated
messages wherever they are displayed or recorded.

TSO/E terminal users can also receive translated messages (including TSO/E
messages) during a TSO/E session or from a batch job. In order to receive
translated TSO/E messages, you must have TSO/E Version 2.2 installed on your
system.

128 z/OS V1R3.0 MVS Planning: Operations

For MMS to handle translated messages, your installation must use the MVS
message compiler to format install message files that contain English message
skeletons and the translated language message skeletons.

IBM provides English and Japanese versions of MVS messages and English and
Japanese versions of TSO/E messages. If you want languages other than
Japanese, the installation must supply its own version of the translated message
skeletons.

References
Applications can use macros for the MVS message translation services. For
information on how applications handle message translation or how to create
message skeletons for languages, see z/OS MVS Programming: Assembler
Services Guide.

Steps for Providing Translated Messages
The following steps describe what your installation must do for users to receive
translated messages.

1. Ensure that the appropriate system install message files have been installed on
your system.

For MVS messages, IBM provides an install message file for U. S. English
messages and an install message file for the Japanese translation. As a feature
of TSO/E, IBM also provides an English and Japanese install message file for
TSO/E messages. Each install message file for the language is a PDS. Your
installation uses SMP/E to install each install message file on the system. You
can install concatenated PDSs. For installation information, see the program
directory for the product.

2. Allocate space for each run-time message file.

You use the MVS message compiler to format each install message file to a
run-time message file. (The compiler formats one run-time message file for each
language including English.) This run-time message file must be a VSAM linear
data set. You must allocate a VSAM linear data set for each run-time message
file. See “Allocating Storage for a Run-Time Message File” on page 130.

3. Use the MVS message compiler to format the install message file into a
run-time message file.

The input to the compiler is the install message file PDS. The output from the
compiler is the run-time message file (allocated in the previous step). See
“Compiling Message Files” on page 130.

4. If needed, create installation exit routines.

IBM provides two exits that an installation can use for MMS processing. You
specify the exit names in MMSLSTxx of SYS1.PARMLIB. See “Controlling MMS
through Installation Exits” on page 132 and “Using Parmlib to Control Message
Translation” on page 132.

5. Create or update the following Parmlib members to initialize values for MMS:

v MMSLSTxx to define the available languages for message translation and
other message translation processing

v CNLcccxx to define the date and time formats for translated messages

v CONSOLxx to specify the MMSLSTxx member in effect for the system

See “Using Parmlib to Control Message Translation” on page 132.

6. Activate MMS.

Chapter 3. Managing Messages and Commands 129

You can activate, refresh, or stop MMS. You can use the INIT statement in
CONSOLxx to activate MMS at initialization. The operator can activate or stop
MMS by using the SET MMS command. See “Activating MMS” on page 133.

On TSO/E, the installation can indicate in the TSO/E LOGON exit a primary or
secondary language for message translation. Otherwise, TSO/E users can specify
the primary or secondary language on the TSO/E PROFILE command, and TSO/E
can deliver the translated messages. See z/OS TSO/E User’s Guide for information.

Allocating Storage for a Run-Time Message File
The install message file contains PDS members that include message skeletons for
the language. (For the English PDS and Japanese PDS that IBM provides, each
PDS member contains message skeletons for each MVS component.) The MVS
message compiler converts the install message file into a run-time message file.
The run-time message file for each language must be a VSAM linear data set.

To create the data set for the run-time message files, you need to specify the
DEFINE CLUSTER function of access method services (IDCAMS) with the LINEAR
parameter. When you code the SHAREOPTIONS parameter for DEFINE
CLUSTER, use SHAREOPTIONS (1,3). For a complete explanation of
SHAREOPTIONS, see z/OS DFSMS: Using Data Sets.

Figure 13 shows a sample job that invokes Access Method Services (IDCAMS) to
create the linear data set named SYS1.ENURMF.DATA on the volume called
MMSPK1. When IDCAMS creates the data set, it creates it as an empty data set.
Note that there is no RECORDS parameter; linear data sets do not have records.

When you have allocated a VSAM linear data set for each run-time message file,
you can run the message compiler to convert the install message file for messages
in that language. (You must allocate one VSAM linear data set for each run-time
message file.)

Compiling Message Files
The message compiler converts the message skeletons in an install message file
into a run-time message file. The compiler expects a PDS or concatenated PDSs
as input. The message compiler reads from the install message file and creates a
run-time message file in the VSAM linear data set that you have allocated. If the
compiler cannot process a message, it issues an error message. The message
compiler also sets a return code.

//DEFCLUS JOB ’ALLOCATE LINEAR’,MSGLEVEL=(2,0),
// CLASS=R,MSGCLASS=D,USER=IBMUSER
//*
//* ALLOCATE A VSAM LINEAR DATASET
//*
///*DCLUST EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//MMSPK1 DD UNIT=3380,VOL=SER=MMSPK1,DISP=OLD
//SYSIN DD *

DELETE (SYS1.ENURMF) CL PURGE
DEFINE CLUSTER (NAME(SYS1.ENURMF) -

VOLUMES(MMSPK1) -
CYL(1 1) -
SHAREOPTIONS(1 3) -
LINEAR) -

DATA (NAME(SYS1.ENURMF.DATA))

Figure 13. Sample JCL for Creating a Run-Time Message File

130 z/OS V1R3.0 MVS Planning: Operations

You must run the message compiler:
v For each language install message file, including U. S. English
v Whenever you receive updates to the messages in the install message file

Invoking the Message Compiler: The message compiler is an executable
program. You can use a batch job, a TSO/E CLIST, or a REXX EXEC to invoke the
message compiler. The syntax to invoke the message compiler for each follows.
The lowercase variables used in the examples have the following meanings:

msg_pds
is the name of the install message file PDS containing all the message
skeletons for a single language. msg_pds must be a partitioned data set.

msg_div_obj
specifies the name of the run-time message file that is to contain the compiled
format of the message skeletons for the language. msg_div_obj must be a
linear VSAM data set suitable for use as a data-in-virtual object.

lang,dbcs
specifies parameters. lang is the three character code of the messages
contained in the install message file. dbcs indicates whether this language
contains double-byte characters (y is yes, n is no).

Using JCL to Invoke the Message Compiler: To invoke the compiler as a batch
job, code the following JCL:

Using CLIST to Invoke the Message Compiler: To invoke the compiler as a
CLIST, code the following statements:

Using REXX to Invoke the Message Compiler: To invoke the compiler as a
REXX exec, code the following statements:
/* MESSAGE COMPILER INVOCATION EXEC */

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN(msg_pds) SHR"
"ALLOC DD(SYSUT2) DSN(msg_div_obj) OLD"
"ALLOC DD(SYSPRINT) DSN(*)"

"CALL ’SYS1.LINKLIB(CNLCCPLR)’ (lang,dbcs)"

compiler_rc=rc

//*
//* GENERATE DATA OBJECT FROM EXTRACTED MESSAGES
//*
//COMPILE EXEC PGM=CNLCCPLR,
// PARM=(lang,dbcs)
//SYSUT1 DD DSN=msg_pds,DISP=SHR /* THE INSTALL MESSAGE FILE */
//SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP) /* THE VSAM DATA SET */
//SYSPRINT DD SYSOUT=*

PROC 0
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE DD’S */
ALLOC DD(SYSUT1) DSN(’msg_pds’) SHR /* ALLOC INPUT - INSTALL MESSAGE FILE */
ALLOC DD(SYSUT2) DSN(’msg_div_obj’) OLD /* ALLOC OUTPUT - VSAM DATA SET */
ALLOC DD(SYSPRINT) DSN(*) /* ALLOC SYSPRINT */
CALL ’SYS1.LINKLIB(CNLCCPLR)’ (’lang,dbcs’) /* CALL MESSAGE COMPILER */
SET &RCODE = &LASTCC /* SET RETURN CODE */
FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE FILES */
EXIT CODE(&RCODE) /* EXIT */

Chapter 3. Managing Messages and Commands 131

"FREE DD(MSGIN,MSGOUT,SYSPRINT)"

return(compiler_rc)

Note: For the variables msg_pds , msg_div_obj , lang , and dbcs , REXX
substitutes values that you have assigned. For information on using REXX,
see z/OS TSO/E REXX User’s Guide.

Example of Running the Message Compiler: Run a batch job to produce the
run-time message file for the Japanese messages. In the example, the install
message file is named INSTALL.MSG.JAPAN. The data set for the run-time
message file is SYS1.MSG.JAPAN and has been previously defined. You can
supply your own names.
//*
//* Creating the run-time message file
//*
//COMPILE EXEC PGM=CNLCCPLR,PARM=(’JPN,Y’)
//SYSUT1 DD DSN=INSTALL.MSG.JAPAN,DISP=SHR
//SYSUT2 DD DSN=SYS1.MSG.JAPAN,DISP=OLD
//SYSPRINT DD SYSOUT=*
//*

Message Compiler Return Codes: The message compiler generates a return
code contained in register 15 and compiler error messages, both of which can be
sent to SYSPRINT. The return codes are as follows:

Code Meaning

0 Successful completion

4 Process complete. Run-time message file is complete but the compiler
generated warnings.

8 Processing complete. The run-time message file is usable but incomplete.

12 Processing ended prematurely. The run-time message file is unusable.

Controlling MMS through Installation Exits
You can code two installation exits that the system invokes to tailor MMS
processing. You specify the names of these exits in MMSLSTxx. See z/OS MVS
Installation Exits.

Using Parmlib to Control Message Translation
To control information about the languages you have installed for translation, you
must specify Parmlib members MMSLSTxx and CNLcccxx. To activate MMS, you
use the INIT statement of CONSOLxx. (Operators can use the SET MMS command
to affect the status of MMS.)

References
For the complete syntax of these SYS1.PARMLIB members, see z/OS MVS
Initialization and Tuning Reference.

Using MMSLSTxx Statements: MMSLSTxx allows you to control information for
each language on your system. It specifies the default language that the installation
can use, the name of the installation exits, the name of the run-time message file,
the name of the SYS1.PARMLIB member that controls the configuration of date and
time formats, and an alternate name for the language, which is optional.

132 z/OS V1R3.0 MVS Planning: Operations

The following examples show how to use MMSLSTxx statements to specify two
languages, U. S. English and Japanese. (Note that the number at the beginning of
each statement is used for reference only; do not code it as part of the statement.)

Statement 1 specifies the language available for use by other MVS components
and application programs. In the example, JPN is the language code for Japanese:
1 DEFAULTS LANGCODE(JPN)

Statements 2 and 3 specify two installation exit routines to tailor MMS processing:
2 EXIT NUMBER(1) ROUTINE(NLSEXIT1)
3 EXIT NUMBER(2) ROUTINE(NLSEXIT2)

Statements 4 and 5 describe information for two languages installed on the system:
4 LANGUAGE LANGCODE(JPN) DSN(RUNTIME.VSAM.JAPAN) CONFIG(CNLJPN01)
5 LANGUAGE LANGCODE(ENU) DSN(RUNTIME.VSAM.US) CONFIG(CNLENU01)

NAME(AMERICAN) NAME(ENGLISH)

Statement 4 describes the language code for Japanese and names the run-time
message file on the DSN parameter. It also specifies the CNLcccxx Parmlib
member (CNLJPN01) that contains configuration data for the display of dates and
times in Japanese messages.

Statement 5 describes the language code for U. S. English and names the run-time
message file on the DSN parameter. It specifies the CNLcccxx Parmlib member
(CNLENU01) for the display of dates and times in U. S. English. It also specifies
two names for referencing the language. The first is the preferred name for the
language (AMERICAN); the second is the alternate name (ENGLISH). TSO/E users
can select the language using either name.

Using CNLcccxx: For each language that you define in MMSLSTxx, you must
provide a CNLcccxx Parmlib member. CNLcccxx controls configuration data used to
display dates and times for the translated messages of each language. In the
member name, ccc is the three-character language code; xx uniquely identifies the
member name. You specify the month, day, and date and time formats for the
language. (If you want, you can specify defaults for date and time formats.)

Using the INIT Statement on CONSOLxx
Use the following keyword on the INIT statement of CONSOLxx to specify the
MMSLSTxx member.

MMS Defines the MMSLSTxx member that contains information about
languages available for translation.

Activating MMS
To activate MMSLST01, code the following on the INIT statement of CONSOLxx:
MMS(01)

If you specify MMS(NO), MMS is not active. After IPL, operators can issue the
following command to activate MMS, where xx is the unique member name:
SET MMS=xx

To display information about MMS, operators can issue the following command:
DISPLAY MMS

The system displays information about MMS and the languages that are available
for message translation.

Chapter 3. Managing Messages and Commands 133

Summary of MVS Message and Command Processing Services
Table 14 summarizes the message and command processing that MVS provides. It
briefly describes the features of each service, indicates how the service is invoked,
and gives the scope of the service in a sysplex environment:

Table 14. Summary of Message and Command Processing that MVS Provides

Service Features Where specified Scope

CONSOLxx INIT v Activate MPF
v Activate AMRF
v Specify WTO,

WTOR, and WTL
buffers

v Activate MMS
v Specify default

timeout value for
aggregating
command responses
from other systems
in the sysplex

Parmlib Sysplex for
activating AMRF
and for
aggregating
command
responses;
system for other
features.

MPF v Suppress messages
v Retain messages
v Select messages for

automation
v Specify installation

exits to process
messages and
commands

MPFLSTxx System

AMRF v Retain action
messages

CONSOLxx INIT Sysplex

IEAVMXIT v Process messages
v Override MPF

processing
v Control color,

highlighting, and
intensity of
messages

CONSOLxx INIT System

Installation-defined
message processing
exits

v Process messages
selected through
MPFLSTxx

v Control color,
highlighting, and
intensity of
messages

MPFLSTxx System

Command Installation
exits

v Process commands MPFLSTxx System

MMS v Process messages
for translation

CONSOLxx INIT System

134 z/OS V1R3.0 MVS Planning: Operations

Chapter 4. Planning for Basic Operation Procedures

Once you have established your logical parmlib values to define your consoles and
their use, you need to consider how your operators will interact with MVS at your
installation.

The tasks of starting, running, and stopping releases involve controlling the MVS
system software and most installation hardware, including processors, channel
paths, I/O devices as well as the MCS consoles and extended MCS consoles that
operators use to perform their tasks. In a multisystem environment, you need to
decide how much control over the systems in a complex or sysplex you want your
operators to have to meet your operations goals for the installation.

Reference
For migration concerns in a sysplex environment, see z/OS MVS Migration. It
describes considerations about operating consoles in a sysplex for systems at
different release levels of MVS.

While planning MVS operations, you or your operators need to understand how to
develop procedures for daily operations and how to make those procedures work
best for the installation. As operations planner, you and your operators must also be
able to predict problems and set up procedures to handle them.

The tasks of operating a z/OS system that are described in this chapter include:
v Initializing the system
v Interacting with system functions
v Controlling shared DASD

Your installation can specify logical parmlib members that can affect how your
operators handle these basic tasks. This chapter describes operator tasks from the
point of view of MVS operations planning and what you can do to simplify how
operators run MVS.

Other basic operator tasks include:

v Building, controlling, or rebuilding a global resource serialization ring or star
complex. These tasks are described in z/OS MVS Planning: Global Resource
Serialization.

v Responding to failing devices and reconfiguring system resources. These tasks
are described in z/OS MVS Recovery and Reconfiguration Guide.

v Controlling the following system activities:

– Controlling system status, device status, the availability of paths, or the
system restart functions

– Controlling time-sharing

– Controlling jobs

– Controlling system information recording for SMF, system trace, the
generalized trace facility (GTF), or master trace.

– Quiescing the system

– Stopping the system

© Copyright IBM Corp. 1988, 2002 135

These tasks are described in z/OS MVS System Commands, which also
describes the syntax for every MVS command and provides examples of
commands.

Operators can activate dynamic I/O configuration for MVS using the Hardware
Configuration Definition or the ACTIVATE command. For information, see z/OS HCD
Planning and z/OS MVS System Commands.

Operators can use commands to control and display information about MVS and
Advanced Program-to-Program Communication (APPC). APPC uses the Systems
Network Architecture (SNA) LU 6.2 protocol and allows interconnected systems to
communicate through applications that exchange data. The APPC/MVS
environment is controlled through SYS1.PARMLIB members APPCPMxx and
ASCHPMxx, and MVS commands START, SET, and DISPLAY. For information, see
z/OS MVS Planning: APPC/MVS Management, z/OS MVS System Commands, and
z/OS MVS Initialization and Tuning Reference.

Initializing the System
During initialization of an MVS system, the operator uses the system console or
hardware management console, which is connected to the processor controller or
support element. From the system console, the operator initializes the system
control program during the nucleus initialization program (NIP) stage.

During the NIP stage, the system might prompt the operator to provide system
parameters that control the operation of MVS. The system also issues informational
messages that inform the operator about the stages of the initialization process.

The LOADxx parmlib member allows your installation to control the initialization
process. For example, if you specify, in LOADxx, the IEASYSxx or IEASYMxx
members that the system is to use, the system does not prompt the operator for
system parameters that are specified in those members; it uses the values in those
members instead.

For information about the placement of LOADxx at initialization, see z/OS MVS
Initialization and Tuning Reference.

For specific information on initialization procedures and the system console, see the
processor operator’s guide.

The System Console and Message Processing
How you define the system console can determine the volume of messages that the
system console receives during and after initialization.

During initialization you can control the volume of messages that the console
receives. See “Specifying LOAD Information” on page 137. You can reply to all
WTOR messages from the system console during initialization.

You can control how the system console receives messages after initialization by
defining values in CONSOLxx. You define routing attributes for the system console
in CONSOLxx that control message traffic when the operator places the console in
problem determination mode. See “Messages that the System Console Receives in
Problem Determination Mode” on page 140.

136 z/OS V1R3.0 MVS Planning: Operations

Using the System Console
Use the attached system console for initialization of MVS and for backup recovery
purposes. For normal operation of the system, use MCS, SMCS consoles or
extended MCS consoles, or subsystem consoles like NetView consoles. During
abnormal situations when these consoles cannot operate, operators can use the
system console to diagnose the console error and restore normal console
operations. See “Problem Determination and the System Console” on page 139.

Specifying LOAD Information
From the system console or hardware management console, operators can specify
the device number of the volume for the input/output definition file (IODF), select a
LOADxx member, and control the display of messages and system prompts during
initialization.

The operator can specify the following values to initialize the system control
program:

v The device number of the volume where the IODF, a VSAM data set that
manages system configuration data, resides. This is also the device on which the
search for the LOADxx member of SYSn.IPLPARM or SYS1.PARMLIB begins.
For information about IODF and SYSn.IPLPARM, see z/OS MVS System Data
Set Definition.

v The LOADxx member of SYS1.PARMLIB or SYSn.IPLPARM (see z/OS MVS
Initialization and Tuning Reference for a detailed description of LOADxx).

v The initialization message suppression indicator (IMSI) that controls the
suppression of messages and system prompts during initialization.

v The alternate nucleus. (This specification overrides the value specified for the
alternate nucleus in LOADxx.)

LOADxx allows you to specify I/O configuration data and information about the
IODF data set, the nucleus, the master catalog, and the IEASYMxx and IEASYSxx
parmlib members. For information about those parmlib members, see z/OS MVS
Initialization and Tuning Reference. For information about the IODF data set, see
z/OS MVS System Data Set Definition.

The IMSI character tells the system whether or not to do the following during
system initialization:
v Display most informational messages.
v Prompt for system parameters.
v Prompt for the name of the master catalog.

See the section on loading the system software in z/OS MVS System Commands
for a table that shows the possible values for the IMSI character. The values
indicate all possible combinations of the actions listed above.

The NIP Console
The operator can complete the initialization process from the system console or
hardware management console. The console acts as a NIP console. You may also
define a device through HCD to act as a NIP console. During the NIP stage, an
operator can continue to initialize the system from the NIP console

You can also define the same device that you use for the NIP console on a
CONSOLE statement in CONSOLxx for the MCS master console. An SMCS
console cannot be the NIP console. When MCS console services are active and

Chapter 4. Planning for Basic Operation Procedures 137

CONSOLxx values take effect, the NIP console can become the master console.
See “Initializing the Master Console” on page 143.

If you define a NIP console for use during initialization, the system directs
messages to the NIP console depending on the values that the operator specifies
for IMSI.

Reference
For information about using HCD to define console devices, see z/OS HCD
User’s Guide.

The System Console and CONSOLxx
You can define the system console to MVS in CONSOLxx. You can define the
system console on a CONSOLE statement by specifying SYSCONS for DEVNUM.
You can specify CONSOLE keywords NAME, AUTH, ROUTCODE, LEVEL, UD,
MONITOR, MSCOPE, and CMDSYS. The system ignores other CONSOLxx
keywords. If you do not specify AUTH, the system console has master command
authority.

RACF definitions for the system console may also be required. For more
information about the system console and console security, see “Defining RACF
Profiles” on page 55.

If you define message routing values for the system console in CONSOLxx, those
values control message routing to the system console only when the operator
activates problem determination mode. During normal operations, when problem
determination mode is inactive, the system ignores these CONSOLxx routing
values. For information about problem determination mode, see “Problem
Determination and the System Console” on page 139.

During initialization, your operator can also specify CON=NONE in response to the
system prompt for a CONSOLxx member. In that case, the system console
assumes default CONSOLxx values and message routing depends on the IMSI
values specified during initialization.

Naming the System Console
It is strongly recommended that you name the system console in CONSOLxx. You
can specify a name for the system console using the NAME keyword. Select a
unique name for the system console that cannot be confused with a valid device
number. (For other console naming restrictions, see “Restrictions for Console
Names” on page 42.)

If your operator specifies CON=NONE, or if you do not name the system console in
CONSOLxx, MVS tries to use the name of the system to which the console is
attached as the name of the system console. The system uses the system name
defined on the IEASYSxx parameter SYSNAME as long as that name is unique and
cannot be interpreted as a valid device number. If you do not name the system
console in CONSOLxx, use a system name that cannot be confused with a device
number that the system can use. For example, do not use a system console name
like ABC, BAD, or C01.

If you specify a system name that the system can interpret as a valid device
number, the system does not use SYSNAME as the name of the system console. If
the system cannot use SYSNAME for the system console name, or if the system

138 z/OS V1R3.0 MVS Planning: Operations

console name is not unique, the name of the system console is SYSCNxxx, where
xxx is a three-character suffix generated by the system.

The System Console During Normal Operations
During normal operations, when the system console is not in problem determination
mode, it receives a minimal set of messages. Otherwise, the volume of messages
received during normal operations might flood the system console and have an
impact on operations.

When it is not in problem determination mode, the system console can receive the
following kinds of messages:

v Synchronous messages that bypass regular MVS message queuing on MCS or
other consoles. Synchronous messages can indicate system problems that
require the operator to respond through the system console directly attached to
the processor controller.

v Undelivered messages that MCS or extended MCS consoles could not receive.
You can define an MCS or extended MCS console with the UD console attribute
to receive all messages that the system cannot deliver. If no other console with
the UD attribute is able to receive the message, the system directs the
undelivered message to the system console.

v Messages that an operator directs to the system console by specifying the
system console name.

During normal operations, an operator can reply to any WTOR message from the
system console. However, the system console cannot receive messages defined by
routing code or message level. Also, except for VARY CN,ACTIVATE, an operator
cannot issue commands from the system console to change the system console
characteristics.

Problem Determination and the System Console
For normal message traffic after initialization, operators use MCS consoles,
extended MCS consoles, or subsystem consoles. During regular system operations,
an operator does not generally use the system console to interact with MVS.

When hardware or software operation problems occur that might cause MCS,
extended MCS, or subsystem consoles to fail, an operator can place the system
console in problem determination mode. When the system console is in problem
determination mode, the operator can:
v Enter commands and receive messages to help debug the system problem
v Control console attribute values for the system console.

The System Console in Problem Determination Mode
To respond to system problems when other consoles fail, an operator can enter
VARY CN,ACTIVATE on the system console to activate problem determination
mode. For diagnosis purposes, problem determination mode expands message and
command processing for the system console. The operator restores the system
console to normal operations by entering VARY CN,DEACTIVATE. For details on
syntax and use of the command, see z/OS MVS System Commands.

Establishing Console Attributes for Problem Determination Mode
in CONSOLxx
You can define system console attributes for problem determination mode in
CONSOLxx. In CONSOLxx, you can define routing codes (ROUTCODE), message
level (LEVEL), the undelivered message attribute (UD), and MONITOR attribute on
the CONSOLE statement for the system console.

Chapter 4. Planning for Basic Operation Procedures 139

During regular operations (when the system console in not in problem determination
mode), the system ignores CONSOLxx values for message routing to minimize
message traffic. (See “The System Console During Normal Operations” on
page 139.) When the operator activates problem determination mode for the first
time after the IPL, the system uses the CONSOLxx values that you have defined to
control problem determination mode for the system console.

If you do not define the system console in CONSOLxx, the system uses
CONSOLxx default values to control problem determination mode for the system
console. For information on console attribute default values, see z/OS MVS
Initialization and Tuning Reference.

Changing Console Attributes through Commands
When the system console is in problem determination mode, the operator with the
proper authorization can issue almost any MVS command. (Note that the operator
cannot use the SWITCH command to switch system console attributes.) To alter the
message routing values for the system console, the operator can issue VARY,
CONTROL, or MONITOR commands. Making changes to system console attributes
through commands allows the operator flexibility in controlling message processing
for the system console during problem determination mode. For example, using the
VARY command during problem determination mode, the operator can redefine
routing codes for the system console without having to reIPL the system.

When the operator removes the system console from problem determination mode,
the system stores the command changes to the console attributes. If the operator
activates problem determination mode again from the system console during the
same IPL, the system uses the console attribute changes it has stored instead of
the values defined in CONSOLxx. See “Example of Controlling Problem
Determination Mode for the System Console”.

Messages that the System Console Receives in Problem
Determination Mode
When the system console is in problem determination mode, the system console
receives all synchronous messages and can reply to all WTOR messages. In
addition, the system console can receive the following messages:

v Messages identified by ROUTCODE or LEVEL either in CONSOLxx or by
operator command. Note that if you use the default value for LEVEL, the system
console in problem determination mode receives all messages except broadcast
messages.

v Undelivered messages if the system console has the UD attribute. If no other
console is able to display an undelivered message, the system console displays
the message regardless of the UD attribute specification for the system console.

v Messages that an operator directs to the system console by specifying the
system console name.

Example of Controlling Problem Determination Mode for the
System Console
The following example shows how an operator can control problem determination
mode for the system console. The example illustrates how the system handles
console attribute definitions ROUTCODE and UD for the system console SYSCON1
defined in CONSOLxx as follows:
CONSOLE DEVNUM(SYSCONS) NAME(SYSCON1)

ROUTCODE(1-5)
UD(Y)

140 z/OS V1R3.0 MVS Planning: Operations

The operator initializes the system from the system console SYSCON1. After
initialization, the CONSOLxx defaults are in effect for the system console. In this
example, the following default values apply:

v ROUTCODE(NONE)

v UD(N)

Note: If no other console with UD(Y) is able to receive an undelivered message,
the system console receives it. Otherwise, the system console does not
receive an undelivered message during normal operations.

1. Normal operations

The operator receives a minimum set of messages on the system
console and monitors normal system operations from an MCS console.

The MCS console fails on the system. The operator decides to enter
VARY CN(syscon1),ACTIVATE on SYSCON1 to place the console in
problem determination mode for the first time during this IPL.

2. Problem determination mode

The system console is now in problem determination mode. The system
uses the values for ROUTCODE and UD defined in CONSOLxx:
v ROUTCODE(1-5)
v UD(Y)

Along with other messages it can receive, the system console receives
messages defined by routing codes 1 through 5 and undelivered
messages.

To receive more information about the problem, the operator decides to
change the routing codes on the system console.

1. Problem determination mode

Without having to re-IPL, the operator issues the VARY command to
change ROUTCODE to ALL. The system console can receive messages
with all routing codes. The operator is able to restore the MCS console
and continue normal operations. The operator enters VARY
CN(SYSCON1),DEACTIVATE on the system console to deactivate
problem determination mode.

2. Normal operations

The system console again receives a minimum set of messages. The
CONSOLxx defaults for ROUTCODE and UD are in effect:
v ROUTCODE(NONE)
v UD(N)

The MCS console fails again on the system. The operator reissues VARY
CN(SYSCON1),ACTIVATE on SYSCON1 for the second time during this ipl.

1. Problem determination mode

The system console is again in problem determination mode. In this
example, the system uses the system console attribute for ROUTCODE
based on when the operator last changed the routing code value. The
UD value is based on CONSOLxx:
v ROUTCODE(ALL)
v UD(Y)

Along with other messages it can receive, the system console receives
messages defined by all routing codes and undelivered messages.

Chapter 4. Planning for Basic Operation Procedures 141

The operator restores the MCS console and issues VARY
CN(SYSCON1) DEACTIVATE on the system console to deactivate
problem determination mode.

2. Normal operations

The operator continues normal operations from the MCS console.

Specifying the Time-of-Day Clock and the JES Subsystem
The system prompts the operator to set the date and time-of-day (TOD) clock and
to start the job entry subsystem. You can
v Control if the operator needs to set the date and time by using CLOCKxx.
v Start JES automatically by using IEFSSNxx.

You can specify CLOCKxx and IEFSSNxx in IEASYSxx, and then specify the
IEASYSxx member in LOADxx. Thus, depending on how you define values for your
Parmlib members, the operator does not have to be prompted during initialization to
set the clock or start JES. Using LOADxx is thus a good way to automate the
initialization procedure for your system and simplify the process for your operators.

CLOCKxx and the Sysplex
CLOCKxx also allows you to specify that the system use an external time reference
for sysplex operations. In a sysplex, each MVS system shares a clock that provides
synchronized time stamps. This requirement allows the sysplex to monitor and
sequence events across member systems. Systems that run on different processors
in a sysplex require a Sysplex Timer to synchronize different TOD time stamps from
the processors. Systems that run on a single processor in a sysplex (MVS systems
running under VM as guest systems, or systems running in logical partitions in a
PR/SM environment) can use the TOD clock in the processor to allow the sysplex
to control timing events.

Plan the local time for CLOCKxx carefully. To maintain the integrity of time stamps
within the sysplex, the standard time origin for the TOD clock must always be the
same. Ensure that the TOD clock for each system in the sysplex is set to the same
standard time origin. IBM strongly recommends the use of Greenwich Mean Time
(GMT).

Consider those occasions when you want to adjust local time, such as the initiation
of Daylight Savings Time in a system or sysplex. If you need to change the time
zone, for example, you can change the time without resetting the TOD processor
clocks. For a sysplex that uses the Sysplex Timer, you can adjust the time offset
from the Sysplex Timer console, or use CLOCKxx and the SET CLOCK command
to reflect the new time. For a sysplex that does not use the Sysplex Timer, you can
use CLOCKxx and the SET CLOCK command. The changes that you make do not
reset the TOD clock in the processor.

When you make adjustments to local time, IBM recommends that you do not reset
the TOD clock on a processor in a sysplex. If you reset the TOD clock on a
processor in a sysplex, the change affects sysplex timing.

142 z/OS V1R3.0 MVS Planning: Operations

References
For information about the LOAD parameter, see z/OS MVS System
Commands. For information about LOADxx, IEASYSxx, CLOCKxx, and
IEFSSNxx, see z/OS MVS Initialization and Tuning Reference.

For information on CLOCKxx, sysplex operations, and specifying local time
changes, see z/OS MVS Setting Up a Sysplex.

Handling Wait States
When software errors occur during system initialization, the system enters a
disabled wait state. To diagnose the problem, the operator must display the
program status word (PSW) to determine the wait state code (the low-order 12 bits)
and reason codes if any. z/OS MVS System Codes contains the operator responses
to the wait state codes. The operator can follow the instructions for the specified
wait state and reason codes. For how to display the PSW, see the operator’s guide
for the processor.

Initializing the Master Console
Once the system initializes the master console, it issues the message IEE612I to
indicate that the master console is controlled by MCS.

The operator can enter the command DISPLAY C,K (or D C,K) to display a
summary of the system CONTROL commands. Operators can use these
commands to change the characteristics of the console.

Interacting with System Functions
To plan your installation’s I/O operations so that operators can respond
appropriately to mounting requests, device allocation, and I/O problems, you need
to consider the following system functions:
v Device allocation
v Hot I/O detection
v Device boxing

Device Allocation
Device allocation is the assignment of input/output devices and volumes to job
steps. Requests for device allocation come from data definition (DD) statements
and dynamic device allocation requests.

The system accepts DD statements from:
v Job input to the JES reader
v Jobs submitted through the TSO SUBMIT command
v Started cataloged procedures
v The MOUNT command
v TSO/E LOGONs

Installation programs that run on the system can specify dynamic device
allocation/unallocation requests.

To control the amount of work needed for device allocation, you might want to
restrict device allocation requests. You can define default values for allocation

Chapter 4. Planning for Basic Operation Procedures 143

processing in ALLOCxx of the parmlib concatenation. ALLOCxx allows your
installation to specify space, data set, and other allocation parameters for dynamic
allocation requests. For more information about ALLOCxx, see z/OS MVS
Initialization and Tuning Reference.

You can specify installation exits that get control whenever an allocation request
occurs to perform further processing. In these exits, you can cancel the job that is
making the request or satisfy the allocation request without having an operator
perform actions like mounting volumes or varying devices on or offline. For more
information about allocation exits, see z/OS MVS Installation Exits.

To control device allocation requests from DD statements, you might restrict each of
the forms of input for these statements (for example, by holding the reader, or by
setting a maximum LOGON count). However, because they originate within
executing programs, you cannot control dynamic device allocation/unallocation
requests.

While allocating devices, the system might ask operators to:
v Mount or dismount volumes
v Make decisions (for example, to bring a device online immediately or to wait)

Use VATLSTxx in the parmlib concatenation to control how to mount volumes for an
installation. Based on the values you set in VATLSTxx, operators can issue MVS
MOUNT and UNLOAD commands to mount or unload volumes efficiently. See
“Specifying Shared DASD Mount Characteristics” on page 147 for a description of
mount characteristics.

At IPL time or whenever a VARY command is issued, the system uses the
VATLSTxx entries that you have specified. VATLSTxx helps reduce the amount of
volume mounting so the system can process allocation requests for mounted
devices quickly. Allocation processing is also faster when you define volumes as
reserved rather than removable. For information on allocating devices in a
multisystem that shares DASD, see “Controlling Shared DASD” on page 146. For
more information using VATLSTxx, see z/OS MVS Initialization and Tuning
Reference.

If a requested volume is not mounted, the system issues a mount message asking
the operator to mount a specific volume or scratch volume. If the operator mounts
the wrong volume, the system finds out as soon as it reads the volume label. The
system unloads the volume and repeats the mount message.

If your system uses automatic volume recognition (AVR), operators can mount
labeled volumes on unused drives not managed by JES3. The system recognizes
these volumes and assigns the drives to later job steps as required.

Generally, to be allocated to job steps, devices must be online. Exceptions are (1)
when the online test executive program (OLTEP) or a similar testing program is
running and (2) when teleprocessing devices are allocated. Operators can bring
offline devices online with the VARY command or in response to the allocation
recovery message, IEF238D.

Operators can also specify that a pending offline device is eligible for allocation
through their response to message IEF238D.

144 z/OS V1R3.0 MVS Planning: Operations

Considerations for Operators
Your operators should understand the need for enough work volumes to satisfy
requests for temporary data sets at peak loads. A shortage of work volumes can
cause the system to request additional scratch volumes so operators need to
balance work volumes across channel paths to increase system efficiency.

Operators should not use the MOUNT command for devices managed by JES3.
See z/OS JES3 Commands. They also should not mount a blank tape volume
because the system scans the entire volume for a tape label and this scanning
wastes time. If an unlabeled tape is needed, the operator can write a tapemark to
avoid unnecessary scanning. After the operator mounts the tape volume and
readies the drive, the system reads the volume label. If an incorrect volume is
mounted, the system unloads the incorrect volume and repeats the mounting
message.

Occasionally operators might receive two mount messages for the same volume,
one starting with IEF and the other with IEC. They should treat the two messages
as though they were one. The second is a reminder.

To refer to I/O devices in MVS commands, operators can use the unique device
number assigned to each device (devnum).

In MVS commands, operators should not specify the symbolic names that
programmers use in DD statements to group several devices for allocation to the
job.

The IBM 3495 Tape Library Dataserver performs some operator actions such as
mounts, demounts, and swaps. Operators might notice fewer messages associated
with these actions. These messages are no longer sent to the console, but rather to
the hardcopy log, where they are available for tracing and diagnosis.

Hot I/O Detection
Hot I/O refers to the repeated I/O interruptions that result from hardware
malfunctions. Because hot I/O can cause the system to loop or to fill the system
queue area with I/O control blocks, operators need to detect hot I/O quickly and
correct the problem.

When the number of repeated interruptions exceeds an installation-defined
threshold value, the system assumes there is a hot I/O condition. You can establish
hot I/O recovery threshold values. If the threshold is reached, the system issues
message IOS109I and attempts to recover from the hot I/O condition. The
IECIOSxx parmlib member allows you to change threshold default values. See z/OS
MVS Initialization and Tuning Reference for information on setting up hot I/O
recovery defaults.

Considerations for Operators
Operators who must respond to hot I/O conditions should try to solve the problem
at the lowest possible level; that is, they should try to correct the problem at the
device first, and then the control unit. Operators can power the device off and on. If
that does not help, they can reset the control unit if the affected device is not a
direct access device. If these actions do not correct the problem, they might have to
physically disconnect the device or control unit.

Whatever action operators take, they must respond to the prompting message or
restartable wait state.

Chapter 4. Planning for Basic Operation Procedures 145

Device Boxing
In certain error recovery situations and in response to certain VARY and CONFIG
commands, the MVS system can “box” an I/O device.

The system boxes a device:

v When it detects hot I/O on the device and the device cannot be recovered

v When, because of a channel path error, it takes the last path to the device offline

v When, because of a channel path error, it releases a reserve or assign on the
device

v When it releases an unconditional reserve for the device

v When the operator issues a VARY OFFLINE command with the FORCE option
for the device

v When the operator issues a CONFIG OFFLINE command with the FORCE
operand for a channel path and the command releases a hardware reserve or
removes the last path to the device

Once a device enters a boxed state, the system:

v Immediately terminates I/O in progress on the device

v Rejects future I/O requests (by a user or by the system) to the device as
permanent I/O errors

v Rejects any attempts to allocate the device

v Puts the device in pending offline status

Note: For more information on device boxing, see z/OS MVS Recovery and
Reconfiguration Guide.

Considerations for Operators
Because operators might release a reserve or assign on a device and cause a data
integrity exposure, they should use the VARY OFFLINE and CONFIG OFFLINE
commands with FORCE only in emergency situations.

When the boxing problem is fixed, operators can take the device out of the boxed
state at any time by issuing VARY device ONLINE. Once the VARY command takes
effect, the device is again available for I/O and allocations. Operators cannot take a
boxed device out of the boxed state by replying with the device name to the
allocation recovery message, IEF238D.

Controlling Shared DASD
The shared direct access storage device (DASD) option allows multiple systems to
access common data on direct access storage devices. This sharing is
accomplished through a hardware feature of the DASD control unit together with the
reserve/release function of the operating system or through the global resource
serialization function of the operating system. (For more information, see z/OS MVS
Planning: Global Resource Serialization.)

During system installation, you can choose the shared DASD option. The
advantages of using shared DASD include:

v Reducing the amount of time your operators have to spend moving volumes from
one system to another.

v Minimizing the updating of data sets because operators have to update only one
instead of two or more duplicates.

146 z/OS V1R3.0 MVS Planning: Operations

v Simplifying scheduling. Unless the job has other special requirements, you can
run a job needing a specific data set on a shared device on any of the sharing
systems.

Specifying Shared DASD Mount Characteristics
Shared DASD can affect the volume characteristics, device status, volume
mounting, and unloading at your installation. You can define shared DASD in
VATLSTxx as permanently resident on the system; volumes on the DASD can be
shared but the DASD itself cannot be physically mounted on another system.

You can also define the DASD as removable; the DASD can be mounted on
another system, but first any other system using the device must take the DASD
offline. Finally, you can define DASD as reserved; operators can also reserve
removable DASD by using the MOUNT command. This means that the DASD is
reserved for use by the system and that the device is offline to other sharing
systems.

You can control the mount characteristics for shared DASD in a system by using
VATLSTxx. Use VATLSTxx to set initial values for the mount characteristics of
shared DASD at your installation.

Your operators can use MOUNT, VARY, and CONFIG commands to reserve
volumes for the system, take devices offline, and inform other sharing systems
about the mounting of the volumes.

References
For information about VATLSTxx, see z/OS MVS Initialization and Tuning
Reference. For information and examples on using MOUNT, VARY, and
CONFIG see z/OS MVS System Commands.

Considerations for Operators
Before mounting a DASD volume to reserve it for the system, operators first must
ensure that jobs requiring the volume are not selected by an initiator. Operators can
hold up job selection by one of the following:
v Using the TYPRUN=HOLD parameter on the job statement.
v Using the appropriate subsystem command.
v Assigning the job to a job class and not activating that class for subsystem

scheduling.

To reserve the volume, the operator then must:

1. Use the VARY command to put the device offline to each sharing system and
wait for the offline message in each system. The device does not go offline until
the message is issued. If no jobs are in progress, the offline message does not
appear on the console. Operators can issue a START DEALLOC command to
receive the message that the device is offline.

2. Use the MOUNT command to notify each sharing system of the unit where the
new volume is being placed, and to put the volume in reserved status.

3. Use the MOUNT command to mount the volume.

After the volume is mounted, operators can use a JES command or activate the
class for subsystem scheduling.

Chapter 4. Planning for Basic Operation Procedures 147

Notes:

1. To stop I/O to a shared device or group of devices, operators can use
IOACTION QUIESCE. See z/OS MVS System Commands for syntax and
examples.

2. If there is a hardware failure on a device other than the system residence
device, the operators must vary the failing device offline on all sharing systems.
Operators can then mount the shared volume on another shared device, if one
is available, as long as parallel mount procedures occur on all sharing systems.

3. Operators can release a reserved device and remove a path to it by issuing
CONFIG CHP,OFFLINE,FORCE. If operators try to remove a path to a reserved
device with any other CONFIG command or with a VARY command, the system
issues message IEE379I or IEE719I and does not execute the command.

4. When you want a shared non-JES3 device to be allocated by only one system,
the operator of each system sharing the device should use the VARY command
to place the device offline on the sharing systems.

IPLing a System that Shares DASD
Shared DASD can also affect how an operator IPLs a system that requires devices
in use by other systems. An operator might have to re-IPL a system that is sharing
DASD. If a device is being used by another system, the initializing system waits and
then issues the following message to the operator:
* id IOS120A DEVICE ddd SHARED. REPLY ’CONT’ or ’WAIT’

The operators should reply with “WAIT”.

“WAIT” causes the system to wait until the reserved device is released. If the
system waits more than one minute, the operator should re-IPL.

Note: Operators must reply WAIT for 3344-emulated 3340 devices and
3350-emulated 3330 devices that are to be marked permanently resident by
the volume attribute list (VATLST) facility.

If the device is still reserved, the system reissues message IOS120A. The operator
should then reply with “CONT” and the path to the device is marked offline to the
system. Thus, the device is also unavailable to jobs running on the system.

148 z/OS V1R3.0 MVS Planning: Operations

Chapter 5. Examples and MVS Planning Aids for Operations

This chapter provides some planning aids and reference information for MVS
operations. It includes a summary of CONSOLxx statements and keywords,
OPERPARM subkeywords for extended MCS consoles, and the MVS commands
that operators can use to modify values. It also includes examples of using RACF
to define and authorize a TSO/E user of an extended MCS console and how to
control the console attributes associated with the user.

Finally, the chapter provides two examples for planning consoles in an MVS
environment:
v Setting up an MCS console cluster for a single MVS system
v Setting up an MCS console configuration for a two-system sysplex

Summary of CONSOLxx and Commands to Change Values
The following tables summarize the CONSOLxx keywords and the operator
commands that can change those keyword values. Table 15 describes the
CONSOLE statement keywords, the OPERPARM equivalent, the MVS command to
change the keyword value, the scope of the keyword, and meaning of the keyword.

Table 16 on page 151 describes the keywords INIT, HARDCOPY, and DEFAULT, the
MVS command to change the keyword value, the scope of the keyword, and the
meaning of the keyword.

“N/A” in a column indicates that no OPERPARM equivalent exists for the
CONSOLE keyword. (There are no OPERPARM equivalents for keywords on INIT
and DEFAULT statements.) “Must Re-IPL” in a column indicates that operators
cannot change the keyword value through commands. z/OS MVS System
Commands provides complete reference information and examples for using MVS
commands.

Table 15. CONSOLE Statement Summary

CONSOLE statement
keyword

OPERPARM equivalent
for extended MCS
consoles

Command to change
keyword value

Scope Meaning

CONSOLE DEVNUM N/A Must re-IPL System Identifies the 3-digit or
4-digit device number
for the MCS console

CONSOLE UNIT N/A Must re-IPL System Defines the unit device
for the MCS console

CONSOLE NAME See Note 1 Must re-IPL Sysplex Defines the console
name

CONSOLE ALTERNATE N/A VARY CN,ALTCONS Sysplex Defines the alternate for
the MCS console

CONSOLE ALTGRP OPERPARM ALTGRP VARY CN,ALTGRP Sysplex Defines the alternate
console group for the
console

CONSOLE AUTH OPERPARM AUTH VARY CN,AUTH Sysplex Defines command
groups or authority

CONSOLE USE N/A CONTROL V,USE Sysplex Defines the input/output
capability of the console

© Copyright IBM Corp. 1988, 2002 149

Table 15. CONSOLE Statement Summary (continued)

CONSOLE statement
keyword

OPERPARM equivalent
for extended MCS
consoles

Command to change
keyword value

Scope Meaning

CONSOLE DEL N/A CONTROL S,DEL Sysplex Specifies automatic
message deletion

CONSOLE RNUM N/A CONTROL S,RNUM Sysplex Defines number of
messages per screen
rolls

CONSOLE RTME N/A CONTROL S,RTME Sysplex Defines interval of time
between screen rolls

CONSOLE CON N/A CONTROL S,CON Sysplex Defines conversational
or non-conversa- tional
message deletion

CONSOLE SEG N/A CONTROL S,SEG Sysplex Defines the number of
lines to delete using
CONTROL E,SEG

CONSOLE AREA N/A CONTROL A Sysplex Defines status display
areas for a console

CONSOLE MSGRT N/A MSGRT Sysplex Routes output from the
DISPLAY, MONITOR,
and CONFIG commands

CONSOLE UTME N/A CONTROL T,UTME Sysplex Defines the time interval
for updating dynamic
status displays

CONSOLE MFORM OPERPARM MFORM CONTROL S,MFORM Sysplex Defines message
formats for the console

CONSOLE MONITOR OPERPARM MONITOR MONITOR Sysplex Displays jobname, data
set status, or TSO/E
information

CONSOLE PFKTAB N/A CONTROL N,PFK System Defines the PFK table
for the console

CONSOLE ROUTCODE OPERPARM
ROUTCODE

VARY CN,ROUT
VARY CN,AROUT
VARY CN,DROUT

Sysplex Defines the routing
codes for the console

CONSOLE LEVEL OPERPARM LEVEL CONTROL V,LEVEL Sysplex Defines message levels

CONSOLE UD OPERPARM UD VARY CN,UD Sysplex Specifies that the
console receive
undelivered messages

CONSOLE MSCOPE OPERPARM MSCOPE VARY CN,AMSCOPE
VARY CN,DMSCOPE
VARY CN,MSCOPE

Sysplex Defines systems that
direct messages to a
console

CONSOLE CMDSYS OPERPARM CMDSYS CONTROL V,CMDSYS Sysplex Defines systems where
commands on a console
can be directed for
processing

CONSOLE SYSTEM N/A VARY
CN,ONLINE,SYSTEM

Sysplex In a sysplex, specifies
which system the
installation expects the
console to be initialized
on.

150 z/OS V1R3.0 MVS Planning: Operations

Table 15. CONSOLE Statement Summary (continued)

CONSOLE statement
keyword

OPERPARM equivalent
for extended MCS
consoles

Command to change
keyword value

Scope Meaning

CONSOLE LOGON N/A VARY CN,LOGON Sysplex Defines the LOGON
attribute of this console.

CONSOLE LU N/A VARY CN,LU Sysplex Defines the predefined
LU for an SMCS
console only.

Note 1: For the name of the extended MCS console, the system uses the TSO/E userid defined by RACF and under
which the OPERPARM segment is stored.

Table 16. Summary of INIT, HARDCOPY, and DEFAULT Statements

INIT, HARDCOPY, and
DEFAULT statement
keywords

Command to change keyword
value

Scope Meaning

INIT APPLID CONTROL M,APPLID System Sets the APPLID used by SMCS on
this system

INIT GENERIC CONTROL M,GENERIC Sysplex Sets the GENERIC used by SMCS
for the entire sysplex

INIT CNGRP SET CNGRP Sysplex Activates the member of CNGRPxx
that defines console groups for the
system or sysplex

INIT NOCCGRP See Note 2 on page 152. System Defines the alternate console group
from which the system can select a
master console when no consoles
are available

INIT MONITOR MONITOR System Displays mount message information

INIT PFK SET PFK System Activates the PFKTABxx member for
MCS consoles

INIT CMDDEL Must re-IPL System Defines the command delimiter for
entering multiple messages on MCS
consoles

INIT MPF SET MPF System Activates the message processing
facility

INIT AMRF CONTROL M,AMRF Sysplex Activates the action message
retention facility

INIT UEXIT CONTROL M,UEXIT System Activates message processing exit
IEAVMXIT

INIT MLIM CONTROL M,MLIM System Specifies buffers for WTO messages

INIT RLIM CONTROL M,RLIM Sysplex Specifies buffers for WTOR
messages

INIT LOGLIM CONTROL M,LOGLIM System Specifies buffers for messages that
the system writes to the hardcopy log

INIT MMS SET MMS System Activates the MVS message
translation service

INIT ROUTTIME CONTROL M,ROUTTIME Sysplex In a sysplex, specifies the maximum
amount of time MVS waits before
aggregating responses to commands
routed to other systems.

Chapter 5. Examples and MVS Planning Aids for Operations 151

Table 16. Summary of INIT, HARDCOPY, and DEFAULT Statements (continued)

INIT, HARDCOPY, and
DEFAULT statement
keywords

Command to change keyword
value

Scope Meaning

DEFAULT SYNCHDEST See Note 2. System Specifies the alternate console group
from which the system can select a
console to display synchronous
messages

DEFAULT LOGON Must re-IPL System Specifies operator LOGON to MCS
Consoles

DEFAULT HOLDMODE Must re-IPL System Specifies that the operator can freeze
the display on MCS console screens

DEFAULT ROUTCODE Must re-IPL System Assigns routing codes for messages
without a target console

DEFAULT RMAX K M,RMAX
See Note 1.

Sysplex Specifies maximum number of
WTOR reply ids

HARDCOPY DEVNUM VARY devnum,HARDCPY System Defines a device as the hardcopy log

HARDCOPY
ROUTCODE

VARY ,HARDCPY,AROUT

VARY ,HARDCPY,ROUT

VARY ,HARDCPY,DROUT

System Defines route codes for the hardcopy
log

HARDCOPY
CMDLEVEL

VARY ,HARDCPY,NOCMDS

VARY ,HARDCPY,INCMDS

VARY ,HARDCPY,STCMDS

VARY ,HARDCPY,CMDS

System Defines command recording options
for the hardcopy log. See Note 3.

HARDCOPY UD VARY ,HARDCPY,UD System Defines the hardcopy log device with
the UD attribute to record
undelivered messages

HARDCOPY HCPYGRP See Note 2. System Specifies the alternate console group
from which the system can select an
alternate console device as hardcopy
log

HARDCOPY
HCFORMAT

HCFORMAT System Defines 4-digit year format for
hardcopy records

Notes:
1. You can increase RMAX without a re-IPL in most cases.
2. You can activate another CNGRPxx member (SET CNGRP) that defines the same console group but with

different console members.
3. HARDCOPY CMDLEVEL controls logging of responses to commands directed to MCS consoles. For extended

MCS consoles, OPERPARM LOGCMDRESP controls the logging of command responses.
LOGCMDRESP(SYSTEM) indicates that the value for HARDCOPY CMDLEVEL in effect for the system is in
effect for the extended MCS console.

Controlling Extended MCS Consoles Using RACF
The following examples show how to use RACF commands to define user profiles
for an extended MCS console user.

152 z/OS V1R3.0 MVS Planning: Operations

Defining the User Profile of an Extended MCS Console
The security administrator can define a RACF user profile to control the console
attributes of the extended MCS console user.

The following example shows how to define a RACF profile for new TSO/E user
TAPE1:
ADDUSER TAPE1 OPERPARM(ROUTCODE(46) AUTH(SYS) MFORM(S) ALTGRP(TAPEGR))

This example defines the userid TAPE1 as an extended MCS console with console
attributes defined by the OPERPARM keyword. (Note that the example includes
only the information about console attributes for TAPE1. For complete information
on the RACF ADDUSER command, see z/OS Security Server RACF Command
Language Reference.

When TAPE1 is active, TAPE1 receives messages with routing code 46, has a
command authority of SYS, and receives messages prefixed with the name of the
system that issues the messages. The console group TAPEGR defined in
CNGRPxx contains consoles to use as an alternate for TAPE1.

For application programs, you can define console attributes for TAPE1 through the
MCSOPER macro instead of through RACF. The console attributes specified on
MCSOPER override the RACF values specified through RACF OPERPARM. See
z/OS MVS Programming: Authorized Assembler Services Guide.

Granting the User Access to the RACF OPERCMDS class
Ensure that the user of the extended MCS console has READ access to a profile in
the RACF OPERCMDS class named:
MVS.MCSOPER.console-name

For a TSO/E user, console-name is the TSO/E userid that issues the TSO/E
CONSOLE command. For an application program, console-name is the name
specified on the MCSOPER macro.

Before the RACF administrator can grant a RACF user (TSO/E user or MCSOPER
name) access to the RACF OPERCMDS class, the administrator must ensure that
the user has a RACF user profile. In the following example, assume that the TSO/E
user or application program name has a RACF user profile already defined.

The RACF security administrator can take the following steps to give users access
to the RACF OPERCMDS class:

1. Issue the SETROPTS command to activate the OPERCMDS class:
SETROPTS CLASSACT(OPERCMDS)

2. Issue the SETROPTS command to activate generic profiles for the class:
SETROPTS GENERIC(OPERCMDS)

3. Issue RDEFINE to establish a profile for MVS.MCSOPER.*:
RDEFINE OPERCMDS MVS.MCSOPER.* UACC(NONE)

4. Grant the TSO/E user or application program access to the APPL class (in this
example user TAPE1):
PERMIT MVS.MCSOPER.* CLASS(OPERCMDS) ID(TAPE1) ACCESS(READ)

TAPE1 must have a RACF user profile defined. See “Defining the User Profile
of an Extended MCS Console”.

Chapter 5. Examples and MVS Planning Aids for Operations 153

5. Issue SETROPTS RACLIST command to refresh the OPERCMDS reserve
class:
SETROPTS RACLIST(OPERCMDS) REFRESH

Allowing a TSO/E User to Issue the CONSOLE Command
The following steps allow TSO/E user TAPE1 to issue the TSO/E CONSOLE
command to activate the extended MCS console. In the example, assume that
TAPE1 has a RACF user profile already defined:

1. Issue SETROPTS to activate the TSOAUTH resource class:
SETROPTS CLASSACT(TSOAUTH)

2. Issue RDEFINE to define the command CONSOLE in the resource class
TSOAUTH with a universal access authority (UACC) of NONE:
RDEFINE TSOAUTH CONSOLE UACC(NONE)

This command creates a profile in the RACF TSOAUTH class for the TSO/E
CONSOLE command.

3. Issue RACF PERMIT to authorize TAPE1 to use the CONSOLE command:
PERMIT CONSOLE CLASS(TSOAUTH) ID(TAPE1) ACCESS(READ)

To limit from which TSO/E terminal TAPE1 can initiate an extended MCS
console session, the security administrator can specify the following:
PERMIT CONSOLE CLASS(TSOAUTH) ID(TAPE1) ACCESS(READ)
WHEN(TERMINAL(terminal-id))

In this example, user TAPE1 can enter the TSO/E CONSOLE command only
from the terminal specified by terminal-id.

4. To refresh the TSOAUTH resource class using SETROPTS RACLIST, issue the
following:
SETROPTS RACLIST(TSOAUTH) REFRESH

Changing Console Attributes Using RACF
To change the console attributes, the RACF security Administrator can use RACF
ALTUSER:
ALTUSER TAPE1 OPERPARM(ROUTCODE(ALL))

This example changes the console routing code for TAPE1 to ROUTCODE(ALL).
Other console attributes defined on the ADDUSER command remain the same.
Note that the ADDUSER command does not affect console attributes specified on
the MCSOPER macro.

Reference
For information about RACF, see z/OS Security Server RACF Security
Administrator’s Guide.

Using RACF to Control APF Lists
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVAPF macro, for processing authorized program
facility (APF) lists.

154 z/OS V1R3.0 MVS Planning: Operations

The SETPROG APF command allows a user to add and delete entries in the
authorized program facility (APF) list, or to change the format of the APF list. SET
PROG allows a user to activate the PROGxx member of SYS1.PARMLIB that
contains definitions for controlling the format and contents of the list of
APF-authorized libraries. CSVAPF is an authorized MVS macro that allows you to
perform the same APF list processing from an application program.

Note: For information on using CSVAPF, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide.
For information on using PROGxx, see z/OS MVS Initialization and Tuning
Reference.

Command Authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to Control Command Authority and Operator Logon” on page 54 and
“Defining RACF Profiles” on page 55.)

Defining Command Profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:

1. To create a profile for the SETPROG command, issue RDEFINE:
RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example user
OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the OPERCMDS class is not already active, issue the SETROPTS command
as follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

Chapter 5. Examples and MVS Planning Aids for Operations 155

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling How to Add or Delete APF List Entries for a Library
To control who can add or delete APF list entries for a library name, the RACF
security administrator can take the following steps:

1. To establish a profile for the library name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVAPF.libname UACC(NONE)

where libname is the fully qualified data set name of the library (without
quotation marks). For example,
CSVAPF.SYS1.SUPER.UTILS

The length of the RACF profile including qualifiers should not exceed 39
characters. Otherwise, if the length of the library name is greater than 32
characters, RACF truncates the profile to 39 characters.

You can use generic characters for the qualifiers in the library name. For
example,
CSVAPF.*.SUPER.UTILS

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all APF library names:
CSVAPF.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For complete coverage of APF-authorized library names, check the names
currently specified in the IEAAPFxx or PROGxx SYS1.PARMLIB members.

2. To permit the user (in this example user OPER1) to add or delete the library
name, issue the following:
PERMIT CSVAPF.libname CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any library name is not covered by a RACF profile and a user has access to
the SETPROG or SET PROG command, MVS accepts the command. To ensure
that only authorized users can perform the operation, you might define a generic

156 z/OS V1R3.0 MVS Planning: Operations

profile for all library names (CSVAPF.**) with UACC(NONE), then define specific
RACF profiles for each set of libraries that the user has authorization to control.

Controlling How to Change the APF List Format
To control who can make the APF list dynamic, the RACF security administrator can
take the following steps:

1. To establish a profile for the following command name to the FACILITY class,
issue RDEFINE:
RDEFINE FACILITY CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC UACC(NONE)

2. To permit the user (in this example user OPER1) to use the command in the
class, issue the following:
PERMIT CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

To control who can to make the APF list static, the RACF security administrator can
take the following steps:

1. Issue RDEFINE to establish a profile for the following command name for the
FACILITY class:
RDEFINE FACILITY CSVAPF.MVS.SETPROG.FORMAT.STATIC UACC(NONE)

2. To permit the user (in this example user OPER1) to use the command in the
class, issue the following:
PERMIT CSVAPF.MVS.SETPROG.FORMAT.STATIC CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 5. Examples and MVS Planning Aids for Operations 157

Using RACF to Control Dynamic Exits
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYNEX macro, for processing dynamic exits.

The SETPROG command allows a user to add and delete routines associated with
a dynamic exit, to change the state of an exit routine, to undefine an
implicitly-defined exit, or to change the attributes of an exit. SET PROG allows a
user to activate the PROGxx member of SYS1.PARMLIB that contains definitions
for controlling dynamic exits. CSVDYNEX is an authorized MVS macro that allows
you to perform the same dynamic exit processing from an application program,
along with defining a dynamic exit, calling the exit routines associated with a
dynamic exit, providing recovery for an exit call, and obtaining a list of the dynamic
exits.

Note: For information on using CSVDYNEX, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide.
For information on using PROGxx, see z/OS MVS Initialization and Tuning
Reference.

Command Authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to Control Command Authority and Operator Logon” on page 54 and
“Defining RACF Profiles” on page 55.)

Defining Command Profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:

1. To create a profile for the SETPROG command, issue RDEFINE:
RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example user
OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the OPERCMDS class is not already active, issue the SETROPTS command
as follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

158 z/OS V1R3.0 MVS Planning: Operations

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling Defining a Dynamic Exit
To control who can define a dynamic exit via the REQUEST=DEFINE option of the
CSVDYNEX macro, the RACF security administrator can take the following steps:

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.exitname.DEFINE UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,EXIT system
command.

2. To permit the user (in this example user USER1) to use the REQUEST=DEFINE
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.e.DEFINE CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 5. Examples and MVS Planning Aids for Operations 159

Controlling Adding, Modifying or Deleting Exit Routines
To control who can add an exit routine to a dynamic exit, or modify or delete an exit
routine routine associated with a dynamic exit, the RACF security administrator can
take the following steps:

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.exitname.modname UACC(NONE)

where exitname is the name of the dynamic exit. For example,
SYS1.IEFACTRT

modname is the name of the exit routine. For example,
MYACTRT

You can use generic characters for the qualifiers in the exit name or routine
name. For example,
CSVDYNEX.SYS1.IEF*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,EXIT system
command.

2. To permit the user (in this example user OPER1) to add or delete the routine
name r to exit e, issue the following:
PERMIT CSVDYNEX.e.r CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any exit or exit routine is not covered by a RACF profile and a user has
access to the SETPROG or SET PROG command, MVS accepts the command.
To ensure that only authorized users can perform the operation, you might
define a generic profile for all exit names (CSVDYNEX.**) with UACC(NONE),
then define specific RACF profiles for each exit or exit routine that the user has
authorization to control.

160 z/OS V1R3.0 MVS Planning: Operations

Controlling How to Undefine a Dynamic Exit
To control who can undefine a dynamic exit, the RACF security administrator can
take the following steps:

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.exitname.UNDEFINE UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name or routine
name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,EXIT system
command.

2. To permit the user (in this example user OPER1) to undefine exit e, issue the
following:
PERMIT CSVDYNEX.e.UNDEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

If any exit or exit routine is not covered by a RACF profile and a user has
access to the SETPROG or SET PROG command, MVS accepts the command.
To ensure that only authorized users can perform the operation, you might
define a generic profile for all exit names (CSVDYNEX.**) with UACC(NONE),
then define specific RACF profiles for each exit or exit routine that the user has
authorization to control.

Controlling How to Obtain a List of the Dynamic Exits
To control who can obtain a list of the dynamic exits via the REQUEST=LIST option
of the CSVDYNEX macro, the RACF security administrator can take the following
steps:

Chapter 5. Examples and MVS Planning Aids for Operations 161

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.LIST UACC(NONE)

2. To permit the user (in this example user USER1) to use the REQUEST=LIST
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.LIST CLASS(FACILITY) ID(USER1) ACCESS(READ)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Calling of a Dynamic Exit’s Routines
To control who can call a dynamic exit’s routines via the REQUEST=CALL option of
the CSVDYNEX macro, the RACF security administrator can take the following
steps:

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.exitname.CALL UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,EXIT system
command.

2. To permit the user (in this example user USER1) to use the REQUEST=CALL
option of the CSVDYNEX macro for exit e, issue the following:
PERMIT CSVDYNEX.e.CALL CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

162 z/OS V1R3.0 MVS Planning: Operations

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Recovering of Dynamic Exit Processing
To control who can use the REQUEST=RECOVER option of the CSVDYNEX macro
to have the system complete its recovery processing of a prior use of CSVDYNEX
REQUEST=CALL, the RACF security administrator can take the following steps:

1. To establish a profile for the exit name for the FACILITY class, issue RDEFINE:
RDEFINE FACILITY CSVDYNEX.exitname.RECOVER UACC(NONE)

where exitname is the name of the dynamic exit. For example,
MYEXIT

You can use generic characters for the qualifiers in the exit name. For example,
CSVDYNEX.MYEX*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all dynamic exit names:
CSVDYNEX.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of exit names, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,EXIT system
command.

2. To permit the user (in this example user USER1) to use the
REQUEST=RECOVER option of the CSVDYNEX macro for exit e, issue the
following:
PERMIT CSVDYNEX.e.RECOVER CLASS(FACILITY) ID(USER1) ACCESS(UPDATE)

USER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 5. Examples and MVS Planning Aids for Operations 163

Using RACF to Control LNKLST Concatenations
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYNL macro, for processing LNKLSTs.

The SETPROG command allows a user to update LNKLST concatenations, by
defining a LNKLST set, adding data sets to or deleting data sets from a LNKLST
set, removing the definition of a LNKLST set from the system, testing for the
location of a specific module in the LNKLST concatenation, activating a LNKLST
set, and updating a job to use the current LNKLST set. SET PROG allows a user to
activate the PROGxx member of SYS1.PARMLIB that contains definitions for
controlling LNKLSTs. CSVDYNL is an authorized MVS macro that allows you to
perform this LNKLST processing from an application program.

Note: For information on using CSVDYNL, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide.
For information on using PROGxx, see z/OS MVS Initialization and Tuning
Reference.

Command Authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the
installation can define a RACF userid for the console itself. (For information, see
“Using RACF to Control Command Authority and Operator Logon” on page 54 and
“Defining RACF Profiles” on page 55.)

Defining Command Profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:

1. To create a profile for the SETPROG command, issue RDEFINE:
RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example user
OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the OPERCMDS class is not already active, issue the SETROPTS command
as follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:

164 z/OS V1R3.0 MVS Planning: Operations

SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling Defining a LNKLST Set
To control who can define a LNKLST set, the RACF security administrator can take
the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.DEFINE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to use the
REQUEST=DEFINE option of the CSVDYNL macro for LNKLST set l, issue the
following:
PERMIT CSVDYNL.l.DEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Chapter 5. Examples and MVS Planning Aids for Operations 165

Controlling Adding a Data Set to a LNKLST Set
To control who can add a data set to a LNKLST set, the RACF security
administrator can take the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.ADD UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to add a data set to LNKLST
set l, issue the following:
PERMIT CSVDYNL.l.ADD CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Deleting a Data Set from a LNKLST Set
To control who can delete a data set from a LNKLST set, the RACF security
administrator can take the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.DELETE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

166 z/OS V1R3.0 MVS Planning: Operations

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to delete a data set from
LNKLST set l, issue the following:
PERMIT CSVDYNL.l.DELETE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Removing the Definition of a LNKLST Set
To control who can remove the definition of a LNKLST set, the RACF security
administrator can take the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.UNDEFINE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:

Chapter 5. Examples and MVS Planning Aids for Operations 167

SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to remove the definition of
LNKLST set l, issue the following:
PERMIT CSVDYNL.l.UNDEFINE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Testing of a LNKLST Set
To control who can test a LNKLST set, the RACF security administrator can take
the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.TEST UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:
CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to test LNKLST set l, issue the
following:
PERMIT CSVDYNL.l.TEST CLASS(FACILITY) ID(OPER1) ACCESS(READ)

OPER1 must be the name of a RACF-defined user or group profile.

168 z/OS V1R3.0 MVS Planning: Operations

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Updating of a Job’s LNKLST Set
To control who can update a job to use the current LNKLST, the RACF security
administrator can take the following steps:

1. To establish a profile for updating LNKLSTs for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.UPDATE.LNKLST UACC(NONE)

2. To permit the user (in this example user OPER1) to update a job to use the
current LNKLST, issue the following:
PERMIT CSVDYNL.l.UPDATE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Activation of a LNKLST Set
To control who can activate a LNKLST set, the RACF security administrator can
take the following steps:

1. To establish a profile for the LNKLST set name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYNL.lnklstname.ACTIVATE UACC(NONE)

where lnklstname is the name of the LNKLST set. For example,
MYLNKLST.SET

You can use generic characters for the qualifiers in the LNKLST set name. For
example,
CSVDYNL.MYLNK*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all LNKLST set names:

Chapter 5. Examples and MVS Planning Aids for Operations 169

CSVDYNL.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

For coverage of LNKLST sets, check the names currently specified in the
PROGxx parmlib members. Also use the DISPLAY PROG,LNKLST system
command.

2. To permit the user (in this example user OPER1) to activate LNKLST set l,
issue the following:
PERMIT CSVDYNL.l.ACTIVATE CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Using RACF to Control Dynamic LPA
RACF allows you to control the use of the MVS commands SETPROG and SET
PROG, and the use of the CSVDYLPA macro, for processing Dynamic LPA.

The SETPROG command allows a user to add modules to the LPA following IPL,
delete modules from the LPA following IPL, and set threshold values for minimum
amounts of CSA storage that still must be available after an ADD operation. SET
PROG allows a user to activate the PROGxx member of SYS1.PARMLIB that
contains definitions for controlling Dynamic LPA. CSVDYLPA is an authorized MVS
macro that allows you to perform the dynamic LPA processing from an application
program.

Note: For information on using CSVDYLPA, including authorization required with
RACF, see z/OS MVS Programming: Authorized Assembler Services Guide.
For information on using PROGxx, see z/OS MVS Initialization and Tuning
Reference.

Command Authorization
An operator can issue the SETPROG or SET PROG command from a console with
AUTH(SYS) or higher. If RACF authorization checking is in effect, you can control
the use of these commands through RACF profiles. RACF authorization checking
overrides the CONSOLxx AUTH specification.

To use RACF authorization checking to control any MVS command, the security
administrator must ensure that each userid that issues the command is defined to
RACF. Operators with a userid and a RACF profile can log on to a console, or the

170 z/OS V1R3.0 MVS Planning: Operations

installation can define a RACF userid for the console itself. (For information, see
“Using RACF to Control Command Authority and Operator Logon” on page 54 and
“Defining RACF Profiles” on page 55.)

Defining Command Profiles
To define the resource profile for SETPROG, the RACF administrator can take the
following steps:

1. To create a profile for the SETPROG command, issue RDEFINE:
RDEFINE OPERCMDS MVS.SETPROG UACC(NONE)

2. To permit the userid for the user logging on to the console (in this example user
OPER1) to use the command in the OPERCMDS class, issue the following:
PERMIT MVS.SETPROG CLASS(OPERCMDS) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the OPERCMDS class is not already active, issue the SETROPTS command
as follows:
SETROPTS CLASSACT(OPERCMDS)

(To ensure that the OPERCMDS class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the OPERCMDS resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(OPERCMDS) REFRESH

For the SET PROG command, you follow the same steps as outlined for SETPROG
but use the following RACF profile name:
MVS.SET.PROG

When you have given access to users of SETPROG and SET PROG, you can
further control the use of the command.

Controlling Adding A Module to LPA after IPL
To control who can add a particular module to the LPA after IPL, the RACF security
administrator can take the following steps:

1. To establish a profile for the library name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYLPA.ADD.modname UACC(NONE)

where modname is the name of the module to add to the LPA. For example,
MYMODULE

You can use generic characters for the qualifiers in the module name. For
example,
CSVDYLPA.ADD.M*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all module names:
CSVDYLPA.ADD.**

Chapter 5. Examples and MVS Planning Aids for Operations 171

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

2. To permit the user (in this example user OPER1) to add module m to the LPA,
issue the following:
PERMIT CSVDYLPA.ADD.m CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Controlling Deleting A Module from LPA after IPL
To control who can delete a particular module from dynamic LPA, the RACF
security administrator can take the following steps:

1. To establish a profile for the library name for the FACILITY class, issue
RDEFINE:
RDEFINE FACILITY CSVDYLPA.DELETE.modname UACC(NONE)

where modname is the name of the module to delete from the LPA. For example,
MYMODULE

You can use generic characters for the qualifiers in the module name. For
example,
CSVDYLPA.DELETE.M*

If you have RACF 1.9 or higher installed, you can use the following generic to
cover all module names:
CSVDYLPA.DELETE.**

To ensure that generic profile checking is in effect for the class FACILITY, issue
the following command:
SETROPTS GENERIC(FACILITY)

2. To permit the user (in this example user OPER1) to delete module m from the
LPA, issue the following:
PERMIT CSVDYLPA.DELETE.m CLASS(FACILITY) ID(OPER1) ACCESS(UPDATE)

OPER1 must be the name of a RACF-defined user or group profile.

Note: Instead of specifying individual userids, you can specify the name of a
RACF group profile and connect authorized users to the group. See
“Defining RACF Profiles” on page 55.

172 z/OS V1R3.0 MVS Planning: Operations

3. If the FACILITY class is not already active, issue the SETROPTS command as
follows:
SETROPTS CLASSACT(FACILITY)

(To ensure that the FACILITY class is active, you can issue the SETROPTS
LIST command.)

4. To refresh the FACILITY resource class, issue SETROPTS RACLIST:
SETROPTS RACLIST(FACILITY) REFRESH

Managing Messages with a Console Cluster
A console cluster is a good way to divide functions and handle message traffic in an
MVS console configuration. In a console cluster, you define a group of consoles
located together, each console handling a different function. One console can
receive system status displays, another unsolicited messages, and still another
operate as a full-capability console to handle commands.

You can set up a console cluster for any console location. Because of the high
volume of message traffic to the master console in some installations, however, the
usual place for a console cluster is in the master console area.

You can design a master console cluster to suit the special needs of your
installation. A typical master console cluster might consist of four consoles, placed
next to each other with one console as the master console. You could set up the
consoles to receive these messages:

v The master console in full-capability mode to receive the action messages or
important informational messages (those with descriptor code 12) that you must
see.

v A console in message stream mode to receive the information messages that
you must see.

v A console in message stream mode to receive ordinary system message traffic
(This console gives you basic information on how the system is running.)

v A console in status display mode to dynamically display the active jobs in the
system and provide display areas for system status displays.

Include other consoles in the cluster if you want to divide the master console
message traffic even more.

Setting Up and Using a Master Console Cluster
If you decide to set up a master console cluster, you might want to follow the
procedures outlined in the following detailed example. You need not follow the
example exactly as it is given. Depending on your needs and the characteristics of
your consoles, choose your own values for area sizes and numbers, PFK
definitions, commands, and so forth.

This example describes how to set up and use a master console cluster that
consists of four consoles. The example assumes that:

v Each of the devices is a 3270-type device with a screen that holds 43 lines. Also,
the device has 24 PFKs.

v Two consoles require keyboards: the master console and the console you specify
as its alternate.

Chapter 5. Examples and MVS Planning Aids for Operations 173

v All devices in the cluster come online during the IPL process. They come online
with the characteristics that you define in CONSOLxx member. The PFKs on the
consoles are defined at IPL with the definitions you establish in the PFK table
you assign to the console.

v The console names and device numbers of the consoles used in this example
are as follows (the mode each console is in when you finish setting up the cluster
is also shown):

You should put the four devices in the cluster on different control units, if possible,
to make recovery easier if a control unit fails.

Many of the statements you define in the CONSOLxx member serve to divide the
message traffic among the consoles and set up the message roll rate for each
screen. When you complete the procedure described on the following pages:

v MSGTRACK, the status display console, will receive the output from the
DISPLAY and TRACK commands.

v MASTER, the full-capability console, will receive the messages that the master
console operator must act on. The console will be in roll-deletable mode. (In
roll-deletable mode, outstanding action messages are not automatically removed
from the screen.)

v MESSAGE, a message stream console, will receive the messages that operators
at other consoles must act on. The console will be in wrap mode.

v INFO, another message stream console, will receive all the information
messages in the system. The console will be in roll mode. (In roll mode, a
specified number of flagged messages roll off the screen after a specified time
interval.)

The procedure for setting up a console cluster involves coding the statements in
CONSOLxx and placing PFK definitions in a PFK table in the PFKTABxx Parmlib
member. See “Summary of Contents of CONSOLxx for the Cluster” on page 180 for
a summary of the coded CONSOLE statements used in this example. See “Defining
PFKs for the Master Console” on page 181 for a summary of the PFK table
definitions for the console MASTER.

Operators can use commands to change these values; however, in this example,
only the SYS1.PARMLIB definitions are shown.

Setting up a master console cluster requires several steps. This example describes:

v How to set up console recovery for the consoles

v How to define routing codes for the consoles

v How to define the operating modes and message levels for the consoles

v How to set up display areas

v How to set up a TRACK display

MSGTRACK
Device number 1E0

MESSAGE
Device number 314

MASTER
Device number 21A

MASTER
Device number 41B

Status Display (SD) Message Stream (MS)Full-capability (FC)
Master Console

Message Stream (MS)

174 z/OS V1R3.0 MVS Planning: Operations

v How to set message roll rates and message deletion specifications for the
consoles

v How to direct command responses to specific consoles

v How to set up a periodic display of outstanding requests for JES2 or JES3

v How to define program function keys (PFKs)

Setting Up Console Recovery for the Consoles
If a console fails, MVS can search the chain of consoles that are members of the
console group defined on ALTGRP for the console to find an active alternate. In this
example, the console group MSTCLST defines the chain of consoles MVS can
search to select an active alternate for MASTER. Console groups ALTCLST1 and
ALTCLST2 establish console recovery for the other consoles in the example.

All console groups for this example are defined in CNGRP01 as follows:
GROUP NAME(MSTCLST)

MEMBERS(MESSAGE,INFO,MSGTRACK)

GROUP NAME(ALTCLST1)
MEMBERS(MSGTRACK,MASTER)

GROUP NAME(ALTCLST2)
MEMBERS(MASTER,MESSAGE)

Code the following statements in CONSOLxx with the device numbers appropriate
to your installation. (In each example, the appropriate keywords are highlighted.)
CONSOLE DEVNUM(1E0) NAME(MSGTRACK) ALTGRP(ALTCLST2)
CONSOLE DEVNUM(21A) NAME(MASTER) ALTGRP(MSTCLST) AUTH(MASTER)
CONSOLE DEVNUM(314) NAME(MESSAGE) ALTGRP(ALTCLST1)
CONSOLE DEVNUM(41B) NAME(INFO) ALTGRP(ALTCLST2)
INIT CNGRP(01)

In this example, CNGRP01 must be active for the consoles to use console group
recovery. If the master console fails, the system merges the console attributes of
MASTER with those of MESSAGE, the first console member in the console group
MSTCLST, makes MESSAGE the new master console, and changes its operating
mode to full-capability. If MESSAGE fails, MVS can merge the console attributes of
MASTER with those of INFO and make INFO the new master console. The
attributes for the failing console MESSAGE are merged with those of MSGTRACK if
active, the first console in MESSAGE’s alternate console group ALTCLST1.

Console switching by group allows the console attributes of a failing console to
remain in the functional group of consoles defined on the ALTGRP keyword. Thus,
you can design console recovery in the configuration according to console function
(for example, a console group to handle printer functions, one to handle tape
functions, or another for master console functions).

Defining Routing Codes for the Consoles
Use routing codes to set up MASTER so that it receives only messages for which
the master console operator is responsible. Direct other messages to MESSAGE
and all routing codes to INFO. In the next section, you will see how the LEVEL
parameter in CONSOLxx further limits messages to these consoles. Code the
following statements to set up the routing codes for MASTER and the message
stream consoles (MESSAGE and INFO), substituting device numbers appropriate to
your installation:

Chapter 5. Examples and MVS Planning Aids for Operations 175

CONSOLE DEVNUM(21A) NAME(MASTER) ROUTCODE(1,2,9,10)
CONSOLE DEVNUM(314) NAME(MESSAGE) ROUTCODE(3-8,12-15,42)
CONSOLE DEVNUM(41B) NAME(INFO) ROUTCODE(ALL)

Note: You do not have to direct tape, DASD, unit record, and teleprocessing
messages (routing codes 3, 4, 5, 6, 7, and 8) to MESSAGE if a console
other than the master is receiving these routing codes and the master
console operator does not have to take any action for such messages.

As a result of these statements, MASTER, MESSAGE, and INFO display the
complete range of master console messages. You do not need to define routing
codes for MSGTRACK because you are going to put MSGTRACK in status display
mode. In status display mode, a console can display only system status display
messages that you direct specifically to the console.

Defining the Operating Modes and the Message Levels for the
Consoles

Code the following statement in CONSOLxx to define the operating mode of
MSGTRACK to output-only for system status displays:
CONSOLE DEVNUM(1E0) NAME(MSGTRACK) USE(SD)

Use statements in CONSOLxx to define the operating modes and the message
levels for MASTER, MESSAGE, and INFO. To further reduce the messages that
appear at the master console, which is already in full-capability mode, eliminate
non-action messages from MASTER. Code the following statement in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(MASTER) LEVEL(R,I,CE,E,NB)

As a result of this statement MASTER receives all action messages with routing
codes 1, 2, 9, and 10; it receives no informational or broadcast messages.

Define MESSAGE and INFO as message stream consoles. Set up message levels
for the two consoles so that MESSAGE receives all the action messages that the
master console does not receive, and INFO receives all the informational messages
for the system. Code the following statement in CONSOLxx:
CONSOLE DEVNUM(314) NAME(MESSAGE) USE(MS) LEVEL(R,I,CE,E,NB)
CONSOLE DEVNUM(41B) NAME(INFO) USE(MS) LEVEL(IN)

As a result of these statements, MESSAGE receives all messages with routing
codes 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, and 42 that require operator response; INFO
receives all informational messages that the system issues.

Setting Up Display Areas
The next step is to define two display areas on MSGTRACK. In this example, the
screen size of your consoles is 43 lines. Specify 28 lines for the bottommost area
(area A). When you put a TRACK command display in this area, you can monitor
the activity of up to 50 jobs. Specify the remaining 15 lines for the second area
(area B). You can direct system status displays to this area. To define these areas,
code the following statement in CONSOLxx:
CONSOLE DEVNUM(1E0) NAME(MSGTRACK) AREA(28,15)

MASTER should also have a display area because display area B on MSGTRACK
might not be able to receive all system status displays. An area of ten lines should
be enough. To establish this area, code the following statement in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(MASTER) AREA(10)

176 z/OS V1R3.0 MVS Planning: Operations

The display areas you have established on the consoles are:

Setting Up a TRACK Display
Output from the TRACK command is the same as output from the DISPLAY A
command. The main difference is that the system periodically updates the display
produced by the TRACK command.

Output from the TRACK command starts with general system statistics: the number
of jobs, mounts and starts, time-sharing users, system address spaces, initiators,
actual TSO/VTAM users, and allowed TSO/VTAM users. This information appears
on the first three lines of the display area. Each of the other lines lists information
for two specific jobs in the system. The information displayed for each job includes:
the job name, the step name, the procedure step name, and the status of the job’s
address space.

If fewer than 50 jobs are executing and time-sharing is active, the status of
time-sharing users follows the status of jobs on the first frame. If there are no
time-sharing users, the bottom lines of the display area are blank. If more than 50
jobs are active and you want to see the status of the jobs or time-sharing users that
are not displayed, you might want to use a PFK to frame through the display. The

Inline message area

Inline message area Area B (15 lines)

Inline message area

Warning line

Warning line

Warning line

MESSAGE
Device number 314

MASTER
Device number 21A

MSGTRACK
Device number 1E0

Message Stream (MS) Console

Full-capability (FC) Console
Master Console

Status Display (SD) Console

Message Stream (MS) Console

INFO
Device number 41B

Area A (10 lines) Area A (28 lines)

Instruction line
Entry area (2 lines)

Figure 14. Display Areas on Consoles in the Console Cluster

Chapter 5. Examples and MVS Planning Aids for Operations 177

statement in CONSOLxx that defines this PFK is described later in this example
under “Defining PFKs for the Master Console” on page 181.

When you issue a TRACK command, the system automatically updates the TRACK
display every 30 seconds. Because you might need more frequent status updates
to keep track of a specific job’s execution, you should cause the system to update
the TRACK display every ten seconds.

To update the TRACK display every ten seconds, code the following statement in
CONSOLxx:
CONSOLE DEVNUM(1E0) NAME(MSGTRACK) UTME(10)

If the TRACK display is updated this frequently, you might not want its output to
appear in the hardcopy log. To keep the TRACK display out of the hardcopy log,
code the following statement in CONSOLxx:
HARDCOPY CMDLEVEL(STCMDS)

The mode of the TRACK display can be either update mode or hold mode. In
update mode, the system updates the display, for this example, every ten seconds.
An operator should not try to frame forward through the TRACK display when it is in
update mode.

The following shows you the information that appears in MSGTRACK when the
TRACK display is in update mode:
IEE104I 14.15.04 90.120 ACTIVITY FRAME LAST PT H 1A
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM

00000 00002 00000 00012 00001 00000/00000
LLA LLA LLA NSW S JES2 JES2 IEFPROC NSW S

When the system updates the display, it returns the display to its first frame,
requiring the operator to start framing all over again to find the needed information.

To freeze the TRACK display, the operator can use the CONTROL D,H command.
Then the operator can frame through the display with the CONTROL D,F command.

The following shows you the information that appears in MSGTRACK when the
TRACK display is in hold mode:
IEE104I 14.15.04 90.120 ACTIVITY FRAME LAST F U 1A
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM

00000 00002 00000 00012 00001 00000/00000
LLA LLA LLA NSW S JES2 JES2 IEFPROC NSW S

In hold mode, the system does not update a TRACK display until the operator
issues the CONTROL D,U command.

Next, place the TRACK command in COMMNDxx:
TRACK A,L,L=MSGTRACK-A

COMMNDxx is the SYS1.PARMLIB member that allows you to specify commands
the system automatically issues at initialization. When the system is IPLed, it
automatically issues the TRACK command and sends the output to out-of-line area
A on MSGTRACK. For information about COMMNDxx, see z/OS MVS Initialization
and Tuning Reference.

178 z/OS V1R3.0 MVS Planning: Operations

When the operator brings up the console, the TRACK display appears in area A of
MSGTRACK. In “Defining PFKs for the Master Console” on page 181, PFKs 22, 23,
and 24 are defined to allow the operator to use the TRACK display efficiently.

Setting Message Roll Rates and Message Deletion Specifications for
the Consoles

The message roll rate appropriate for a console depends on the message traffic to
that console. To establish a starting message roll rate for consoles 2, 3, and 4, code
the following statements in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(MASTER) DEL(RD) SEG(39) RNUM(10) RTME(2)
CONSOLE DEVNUM(314) NAME(MESSAGE) DEL(W) RTME(1/2)
CONSOLE DEVNUM(41B) NAME(INFO) DEL(R) SEG(39) RNUM(10) RTME(2)

These statements put MASTER in roll-deletable mode, MESSAGE in wrap mode,
and INFO in roll mode. (See “Specifying Automatic Message Deletion for MCS or
SMCS Consoles” on page 72 for a description of roll, roll-deletable, and wrap
modes.) Adjust the RNUM and RTME specifications until the roll rate is appropriate
for the message traffic on MASTER and INFO. Adjust the RTME specification for
MESSAGE in wrap mode. Also specify HOLDMODE for MASTER, MESSAGE, and
INFO. Code the following DEFAULT statement:
DEFAULT HOLDMODE(YES)

HOLDMODE allows operators to freeze the screen for consoles in roll,
roll-deletable, or wrap mode by pressing the enter key. To unfreeze the screen,
operators can press the enter key again. See “Temporarily Suspending the Screen
Roll” on page 76.

Once you determine the appropriate values for RNUM and RTME, code the values
in the RNUM and RTME parameters in CONSOLxx.

Use the MSGRT statement in CONSOLxx to direct the responses to certain MVS
commands to specific consoles without having to specify the location operand (L=)
on each command. For this example, direct the responses to all DISPLAY
commands you enter on the master console (MASTER) to the out-of-line display
area B of MSGTRACK. You should also cause any TRACK commands you issue
on MASTER to appear in the out-of-line display area A of MSGTRACK. Code the
following statement in CONSOLxx:
CONSOLE DEVNUM(21A) NAME(MASTER) MSGRT(’D=A,C,CONSOLES,D,DUMP,GRS,M,MPF

PFK,R,S,SMF,U,3850,OPDATA),L=MSGTRACK-B’,’TR=A,L=MSGTRACK-A’)

As a result of this statement:

v Any of the following DISPLAY commands you enter on MASTER appear in
display area B of MSGTRACK:
DISPLAY A DISPLAY GRS DISPLAY SLIP
DISPLAY C,K DISPLAY M DISPLAY SMF
DISPLAY CONSOLES DISPLAY MPF DISPLAY U
DISPLAY DMN DISPLAY PFK DISPLAY 3850
DISPLAY DUMP DISPLAY R DISPLAY OPDATA

v The responses to all TRACK commands you enter on MASTER appear in display
area A on MSGTRACK.

If your system includes JES2, when you bring up the console, you can use the
JES2 REDIRECT command to direct the responses to certain JES2 $D commands
to specific consoles. For this example, direct the responses to the JES2 commands

Chapter 5. Examples and MVS Planning Aids for Operations 179

$DA, $DF, $DI, $DJ, $DN, $DQ, and $DU to display area B of MSGTRACK. Issue
the following command to make this change:
REDIRECT(MASTER),DA=MSGTRACK-B,DF=MSGTRACK-B
DF=MSGTRACK-B,DI=MSGTRACK-B,DJ=MSGTRACK-B,DN=MSGTRACK-B,
DQ=MSGTRACK-B,DU=MSGTRACK-B

Note: Put this command in the JES2 initialization data set so that it is issued
automatically once JES2 is initialized. For more information, see z/OS JES2
Initialization and Tuning Reference.

If your system includes JES3, use JES3 commands to direct messages to specified
consoles.

Setting Up a Periodic Display of Outstanding Requests
If your system includes JES2, you can have the system periodically display
outstanding requests so that you always know how many there are.

You can set up such a periodic display through the JES2 automatic command
facility, telling JES2 to issue a command at a defined interval. (The minimum time
interval you can specify is 30 seconds.) You must use the $TA JES2 command to
define both the command you want issued and the number of seconds in the
interval between commands. To cause JES2 to issue a DISPLAY R command every
60 seconds and to direct the command output to display area B of MSGTRACK,
issue the following command:
$TA,I=60,’$VS,’’D R,L,L=MSGTRACK-B’’’

Note: Put this command in the JES2 initialization data set so that it is issued
automatically once JES2 is initialized.

You use the $ZA JES2 command to temporarily stop JES2 from issuing the defined
commands. You use the $SA command to cause JES2 to resume issuing the
defined commands. Use the $CA command to cancel both the defined commands
and time interval:
$CAxxxx

where xxxx is the ID of the periodic display.

Summary of Contents of CONSOLxx for the Cluster
The statements you place in CONSOLxx to initialize the cluster are:
CONSOLE DEVNUM(1E0) NAME(MSGTRACK) ALTGRP(ALTCLST2)

USE(SD)
AREA(28,15)

CONSOLE DEVNUM(21A) NAME(MASTER) ALTGRP(MSTCLST) AUTH(MASTER)
ROUTCODE(1,2,9,10)
LEVEL(R,I,CE,E,NB)
AREA(10)
DEL(RD) SEG(39) CON(N) RNUM(10) RTME(2)
MSGRT(’D=(A,C,CONSOLES,D,DUMP,GRS,M,MPF,PFK,R,S,

SMF,U,3850,OPDATA),L=MSGTRACK-B’,’TR=A,L=MSGTRACK-A’)
PFKTAB(MASTCMDS)

CONSOLE DEVNUM(314) NAME(MESSAGE) ALTGRP(ALTCLST1)
ROUTCODE(3-8,12-15,42)
USE(MS) LEVEL(R,I,CE,E,NB)
DEL(W) RTME(2)

CONSOLE DEVNUM(41B) NAME(INFO) ALTGRP(ALTCLST2)

180 z/OS V1R3.0 MVS Planning: Operations

ROUTCODE(ALL)
USE(MS) LEVEL(IN)
DEL(R) SEG(39) RNUM(10) RTME(2)

HARDCOPY CMDLEVEL(STCMDS)

DEFAULT HOLDMODE(YES)

INIT PFK(02) CNGRP(01)

Notes:

1. Substitute the device numbers and console names that are appropriate to your
installation.

2. Adjust SEG, RNUM, RTME, and other values, as appropriate to the devices in
your console cluster.

3. If you have JES2 at your installation, place the following command in the
initialization data set:

v REDIRECT(MASTER),DA=MSGTRACK-B,DF=MSGTRACK-B,
DF=MSGTRACK-B,DI=MSGTRACK-B,DJ=MSGTRACK-B,
DN=MSGTRACK-B,DQ=MSGTRACK-B,DU=MSGTRACK-B

v $TA,I=60,‘$VS,’‘D R,L’‘’

Defining PFKs for the Master Console
You have to redefine some of the PFKs 1 through 9 that the system assigns at IPL
and define additional PFKs for MASTER because:

v The nine PFKs are not enough to set up and use the console cluster effectively.

v PFKs 1 through 9 do not put the commands you need to operate the console
cluster in the most convenient places.

You need to define PFKs on MASTER for the common operator command functions
and the commands to control the console cluster because the master console is the
only full-capability console in the cluster.

Place all your definitions for PFKs in a PFK table that you create with the name
MASTCMDS. All the definitions in this section follow the first statement in the table:
PFKTAB TABLE(MASTCMDS)

The commands you define in this table go into effect at IPL, providing you activate
the table. The section “Activating the PFK Table” on page “Activating the PFK Table”
on page 184 describes how you activate MASTCMDS by defining the PFKTABxx
member in SYS1.PARMLIB member that contains it. (To change PFK tables,
operators can use the SET PFK command. To dynamically redefine a PFK,
operators can use the CONTROL N,PFK command. See z/OS MVS System
Commands for how to use these commands.)

Define PFKs 13, 14, 17, and 18, to enter the functions defined for PFKs 1, 2, 5, and
6 at IPL. Add the following entries to MASTCMDS to control erasing and displaying
of messages on MASTER:
PFK(13) CMD(’K E,1’)
PFK(14) CMD(’K E’)
PFK(17) CMD(’K S,DEL=N’)
PFK(18) CMD(’K S,DEL=RD’)

For controlling the cluster, define PFKs 15 and 16 to erase and frame system status
displays on MASTER, code the following entry in MASTCMDS:

Chapter 5. Examples and MVS Planning Aids for Operations 181

PFK(15) CMD(’K E,D,L=MSGTRACK-B’)
PFK(16) CMD(’K D,F,L=MSGTRACK-B’)

As a result of these definitions, PFK 15 erases a status display from display area B
of MSGTRACK and PFK 16 frames a status display in display area B of
MSGTRACK.

To establish the message routing instructions for JES2 messages, add the following
entry to MASTCMDS:
PFK(3) CMD("$ADD REDIRECT(MASTER),DA=MSGTRACK-B,DF=MSGTRACK-B,

DF=MSGTRACK-B,DI=MSGTRACK-B,DJ=MSGTRACK-B,DN=MSGTRACK-B,
DQ=MSGTRACK-B,DU=MSGTRACK-B;$TA,I=60,’$VS,
’’D R,L,L=MSGTRACK-B’’’")

For more information about the JES2 REDIRECT command, see z/OS JES2
Commands.

As a result of this definition, pressing PFK 3

v Directs the output of any of the following JES2 $D commands entered on
MASTER to display area B of MSGTRACK:
$DA $DJ $DQ
$DF $DN $DU
$DI

v Makes the JES2 automatic command facility issue a DISPLAY R command every
60 seconds and direct the command response to display area B of MSGTRACK.

You should define PFKs to remove action messages quickly from the screen of the
master console (MASTER) because the console will be in roll-deletable mode. In
roll-deletable mode, outstanding action messages are not automatically removed
from the screen. Therefore, if you do not remove the action messages, the screen
eventually fills with these messages and messages that are waiting to appear start
to use up the message buffer space.

Define PFK 12 by adding the following entry to MASTCMDS:
PFK(12) CMD(’K S,NAME(MASTER) DEL=R’)

As a result of this command, pressing PFK 12 causes the master console to roll all
messages.

When PFK 12 makes MASTER roll all its messages, it reduces the number of
backed-up messages, in effect, by displaying them all.

Notes:

1. If the action message retention facility is active, operators can issue a DISPLAY
R command to display again any action messages that are retained (that is, the
messages that roll off or are erased from a screen).

2. If action messages fill up a console screen frequently, operators should first
make sure that they are responding to the messages. If they do not respond to
them, the system cannot remove them automatically from the screen. If they are
responding to the messages as they should, check the configuration of the
console cluster. You might have to:

v Add another console to the cluster so you can split up the message traffic
even more

v Include more large-screen devices (such as the 3290) in the cluster

182 z/OS V1R3.0 MVS Planning: Operations

v Keep the master console in the roll mode of message deletion (instead of the
roll-deletable mode) so that all messages roll off the screen

3. Because console MESSAGE is in wrap mode, action messages are
automatically overlaid as new messages appear on the screen. There is no
need to define PFKs to remove action messages as for MASTER.

You should define a PFK to display all the outstanding requests at once so you can
always keep track of or respond to them. Define PFK 21 by adding the following
entry to MASTCMDS:
PFK(21) CMD(’K V,USE=MS,L=MSGTRACK;K V,USE=SD,L=MSGTRACK;K A,15,18,10,

L=MSGTRACK;$DU,L=MSGTRACK-A;D R,L,L=MSGTRACK-B)

As a result of this command, pressing PFK 21:

v Changes MSGTRACK to message stream mode

v Puts MSGTRACK back in status display mode

v Defines new out-of-line display areas A (15 lines), B (18 lines), and C (10 lines)
for MSGTRACK

v Displays JES2 unit record device status in out-of-line display area A of
MSGTRACK

v Displays outstanding requests in out-of-line display area B of MSGTRACK

When MSGTRACK enters message stream mode, the system stops the TRACK
display in area A and erases any display in area B, thus clearing the screen for the
display of outstanding requests.

You should define a PFK to restore the original TRACK command display when you
no longer need the display of outstanding requests. Define PFK 22 by issuing:
PFK(22) CMD(’K V,USE=MS,L=MSGTRACK;K V,USE=SD,L=MSGTRACK;K A,28,15,

L=MSGTRACK;TR A,L;K T,UTME=10,L=MSGTRACK’)

As a result of this command, pressing PFK 22:

v Erases any system status displays on MSGTRACK’s screen by changing the
mode of MSGTRACK from status display to message stream and back to status
display.

v Defines display areas A and B on MSGTRACK.

v Starts a TRACK display on MSGTRACK.

v Sets the time interval for updating the TRACK display to 10 seconds.

You should define a PFK to let you frame through the TRACK display on
MSGTRACK. Define PFK 23 by adding the following entry to MASTCMDS:
PFK(23) CMD(’K D,H,L=MSGTRACK-A;K D,F,L=MSGTRACK-A’)

As a result of this command, pressing PFK 23:

v Puts the TRACK command display area in hold mode. (For information on the
modes of a TRACK display, see “Status Displays and MCS and SMCS Consoles”
on page 79.)

v Causes the next frame of the TRACK display to appear.

If you want to frame further through the display, press PFK 23 again.

You should define another PFK to cause the system to continue updating the
TRACK display after you are finished framing through it. Define PFK 24 by adding
the following entry to MASTCMDS:

Chapter 5. Examples and MVS Planning Aids for Operations 183

PFK(24) CMD(’K D,U,L=MSGTRACK-A’)

As a result of this command, pressing PFK 24 puts the TRACK display back in
update mode.

Summary of the PFK Definitions for the Cluster
The PFK table named MASTCMDS now contains the definitions that have been
defined in the previous section. If you issue DISPLAY PFK,TABLE=MASTCMDS,
the definitions, including those that IBM supplies, display. In message IEE235I, the
NO that appears in the column labelled CON, indicates that the commands are
non-conversational. The display appears as follows:
PFK DEFINITIONS FOR MASTER TABLE=MASTCMDS IN PFKTAB02

KEY# CON ------------DEFINITION-----------------------

1 NO K E,1 ERASE TOP LINE FROM SCREEN
2 NO K E ERASE ONE SEGMENT FROM SCREEN
3 NO $ADD REDIRECT(MASTER),DA=MSGTRACK-B,DF=MSGTRACK-B

DF=MSGTRACK-B,DI=MSGTRACK-B,DJ=MSGTRACK-B,DN=MSGTRACK-B,
DQ=MSGTRACK-B,DU=MSGTRACK-B;$TA,I=60,’$VS,’D R,L,L=MSGTRACK-B’

4 NO K D,F FRAME DISPLAY FORWARD IN AREA
5 NO K S,NAME(MASTER) DEL=N HOLD IN-LINE OUTPUT
6 NO K S,NAME(MASTER) DEL=RD RESUME IN-LINE OUTPUT
7 NO D A,L LIST ACTIVE JOBS AND TSO NAME(MASTER) USERS
8 NO D R,L LIST OPERATOR REQUESTS
9 NO K D,U UPDATE DYNAMIC DISPLAY
10 NOT DEFINED
11 NOT DEFINED
12 NO K S,NAME(MASTER) DEL=R
13 NO K E,1
14 NO K E
15 NO K E,D,L=MSGTRACK-B
16 NO K D,F,L=MSGTRACK-B
17 NO K S,DEL=N
18 NO K S,DEL=RD
19 NOT DEFINED
20 NOT DEFINED
21 NO PFK(21) CMD(’K V,USE=MS,L=MSGTRACK;K V,USE=SD,L=MSGTRACK;

K A,15,18,10,L=MSGTRACK;$DU,L=MSGTRACK-A;
D R,L,L=MSGTRACK-B)

22 NO K V,USE=MS,L=MSGTRACK;K V,USE=SD,L=MSGTRACK;
K A,28,15,L=MSGTRACK;TR A,L;K T,UTME=10,L=MSGTRACK

23 NO K D,H,L=MSGTRACK-A;K D,F,L=MSGTRACK-A’
24 NO K D,U,L=MSGTRACK-A

Notes:

1. The PFKs that are noted NOT DEFINED are available for you to define
according to your needs.

2. If you put the console into message stream or display status mode, you can no
longer use the PFKs.

Activating the PFK Table
The PFK table named MASTCMDS must reside in a PFKTABxx Parmlib member. In
this example, assume that the member is named PFKTAB02. The following
statements in CONSOLxx activate MASTCMDS:
CONSOLE DEVNUM(21A) NAME(MASTER) PFKTAB(MASTCMDS)
INIT PFK(02)

The PFK commands you defined in MASTCMDS go in effect for MASTER at the
next IPL.

184 z/OS V1R3.0 MVS Planning: Operations

Using the Master Console Cluster and Setting It Up Again
Now that you have set up all the consoles and defined all the PFKs that you need
in the cluster, you can work normally with the console message traffic at MASTER.
Press PFK 21 once in a while to display both the JES2 unit record device status
and the outstanding requests on MSGTRACK. When you are done with this display,
press PFK 22 to restore the TRACK display on MSGTRACK.

When you IPL again, the definitions you established in the CONSOLxx and
PFKTABxx members are in effect. If you have JES2 on your system, as soon as
JES2 becomes active, press PFK 3 to set up the JES2 message routing for the
cluster and a periodic display of outstanding requests.

At this point, you have fully set up the cluster as before. You can now work normally
again from the master console, using PFKs 21 and 22 as described earlier.

The 3290 as a Console Cluster
You can set up a single 3290 as an entire console cluster, as described in
Figure 15. This example shows a four-part 3290 screen initialized like the four 3278
consoles in Figure 14 The consoles on the 3290 are arranged so that the master
console is the lower left-hand quadrant with the status display console beside it; the
two message stream consoles are above them. To set up the cluster, follow the
steps described earlier in this section. (Because each of the four consoles screens
on the 3290 is shorter than the 3278-4 used in the console cluster example, adjust
the values for SEG, RNUM, RTME, and area sizes.)

Defining a Console Configuration for a Sysplex Environment
In a sysplex, your operators can receive messages from other systems and send
commands to process on another system in the sysplex.

In this example, you want to define the console configuration for two MVS systems
(SYA and SYB) that are part of a sysplex. Your console definitions reside in
CONSOLxx, and you need to define your console configuration separately for each

MESSAGE

MASTER MSGTRACK

INFO

22 rows
80 columns

Message
Stream

Message
Stream

22 rows
80 columns

22 rows
80 columns

Status
Display

22 rows
80 columns

Master
Console

Full-
Capability

Figure 15. Single 3290 Screen As a Console Cluster

Chapter 5. Examples and MVS Planning Aids for Operations 185

system in the sysplex. In this example you will define two CONSOLxx members,
one for SYA and one for SYB. (Both SYA and SYB are at the latest level of
MVS/ESA SP Version 4.)

Planning Your Console Configuration for Each System
Before you start to define your consoles, it is a good idea to plan the console
attachments to each system in the sysplex as well as the console groups that each
system uses for recovery. You might ask yourself how you want your operators to
be able to monitor the systems in the sysplex (you might want to limit message
traffic, for example, using MSCOPE). For recovery purposes, you might want to
define alternate consoles on other systems as part of console group definitions, or
set up a console group on each system to handle synchronous messages.

Figure 16 illustrates one plan that you might use:

This configuration uses four consoles in the sysplex. Solid lines indicate physical
attachments. MASTR and TAPELIB are both defined to SYA. PRINTCON and
ALTMST are both defined to SYB. However, all consoles in this configuration have
a logical connection to both systems. Full-capability consoles can receive messages
from both SYA and SYB and enter commands to run on either SYA or SYB.
PRINTCON is a console that monitors print operations for both systems. TAPELIB
is a full-capability console that handles information for tape libraries. MASTR is the
master console in the configuration, and ALTMST is one of the master console
alternates defined with master authority.

Console Recovery for the Sysplex
The following console groups definitions are defined for the sysplex:
CNGRP0A GROUP NAME(SYNCHSYA)

MEMBERS(*MSTCON*,TAPELIB,*SYSCON*)

GROUP NAME(MASTGRP)
MEMBERS(TAPELIB,ALTMST)

GROUP NAME(TAPEGRP)
MEMBERS(MASTR,ALTMST,PRINTCON)

GROUP NAME(NEWMSTG)

SYA SYB

signalling

paths

PRINTCONTAPELIB

MASTR

3F1

3FE

3E1

3E0

ALTMST

Figure 16. Console Configuration for a Two-System Sysplex

186 z/OS V1R3.0 MVS Planning: Operations

MEMBERS(ALTMST,TAPELIB,PRINTCON)

CNGRP0B GROUP NAME(SYNCHSYB)
MEMBERS(ALTMST,PRINTCON,*SYSCON*)

GROUP NAME(ALTMGRP)
MEMBERS(TAPELIB,PRINTCON)

GROUP NAME(PRINTGRP)
MEMBERS(ALTMST,MASTR,TAPELIB)

Both CNGRP0A and CNGRP0B can be specified on the INIT statement of the first
system that joins the sysplex (in this example, SYA). Console group definitions are
inherited by SYB when it joins the sysplex. When both SYA and SYB are active,
console switching between systems is possible.

Group SYNCHSYA in CNGRP0A and SYNCHSYB in CNGRP0B define consoles
that can receive synchronous messages. Because a console must be physically
attached to the system that issues the synchronous message, consoles in
SYNCHSYA are all attached to SYA, and consoles in SYNCHSYB are all attached
to SYB. The system console (*SYSCON*) must be attached to ES/9000 control
units 9021 or 9121 to be able to display synchronous WTO and WTOR messages.
You define these console group names on DEFAULT SYNCHDEST for each
system. (See “Planning Console Recovery” on page 43.)

The group NEWMSTG defines console members that the sysplex can use to select
a master console during a no consoles condition.

Defining CONSOLxx for Each System
SYA and SYB use unique CONSOLxx members to define the console configuration
for the sysplex in Figure 16 on page 186.

The CONSOLxx definitions for SYA are as follows:

You plan to IPL SYA into the sysplex first.

When SYA is IPLed into the sysplex, MASTR and TAPELIB are active. Both
MASTR and TAPELIB are full-capability consoles. Console group members
CNGRP0A and CNGRP0B are active and the console group definitions in both
members are established for the sysplex. However, consoles on SYB are not yet
active so switching from a console on SYA to an alternate console on SYSB is not
yet possible.

CONSOLE DEVNUM(3E0) NAME(MASTR) UNIT(3270-X)
AUTH(MASTER) ROUTCODE(1,2,4,6,8,65-96,9,10)
ALTGRP(MASTGRP) USE(FC) DEL(RD) AREA(28,15)
RNUM(15) RTME(1)

CONSOLE DEVNUM(3E1) NAME(TAPELIB) UNIT(3270-X) AUTH(SYS,IO,CONS)
ROUTCODE(3,5,42) LEVEL(R,I,IN)
ALTGRP(TAPEGRP) USE(FC) DEL(R) RNUM(15) RTME(1)
AREA(28,15) MFORM(S)

INIT MPF(01,02,03) CNGRP(0A,0B) NOCCGRP(NEWMSTG)

DEFAULT HOLDMODE(YES) SYNCHDEST(SYNCHSYA)

Chapter 5. Examples and MVS Planning Aids for Operations 187

MASTR is in roll-deletable mode with 15 messages rolling off the screen every
second. Action messages accumulate at the top of the message display area where
the operator can delete them. MASTR also has two display areas defined of 28
lines and 15 lines.

TAPELIB is in roll mode also with 15 messages rolling every second. The
CONSOLE statement for TAPELIB includes MFORM(S), which specifies that the
name of the system that issues a message (SYA or SYB) will appear with the
message text on the screen display for TAPELIB.

MASTR receives master console action and informational messages, messages
about the disk library, processor information, security, and system error messages
(indicated by routing codes) from both SYA and SYB. TAPELIB receives tape
messages and general informational messages for JES2 (indicated by routing
codes) from both systems. TAPELIB also receives certain messages indicated by
message level (WTOR messages, immediate action messages, and informational
messages). MASTR by default receives messages from all message levels.

SYA specifies MPFLST01, MPFLST02, and MPFLST03 on the INIT statement. The
console group NEWMSTG specified on INIT NOCCGRP provides master console
recovery if a no consoles condition occurs in the sysplex.

SYSLOG is the default for the hardcopy of messages that SYA issues, and
HOLDMODE is in effect for the consoles on SYA. The console group SYNCHSYA is
specified on DEFAULT SYNCHDEST. Consoles defined in SYNCHSYA can display
synchronous messages.

The CONSOLxx definitions for SYB are as follows:
CONSOLE DEVNUM(3FE) NAME(ALTMST) UNIT(3270-X) AUTH(MASTER)

ALTGRP(ALTMGRP)
ROUTCODE(1,2,8,12) LEVEL(R,I,CE)
UD(Y) USE(FC) DEL(RD) RNUM(15) RTME(1)

CONSOLE DEVNUM(3E1) UNIT(3270-X) NAME(PRINTCON) ALTGRP(PRNTGRP)
ROUTCODE(97-128) UD(Y) USE(FC) DEL(W) RTME(1/4)

INIT MPF(04) MMS(01) CNGRP(0C)

DEFAULT SYNCHDEST(SYNCHSYB)

When SYB is IPLed into the sysplex, ALTMST and PRINTCON are active on SYB.
Both CNGRP0A and CNGRP0B are already active in the sysplex, so console
switching to an alternate on a different system is possible.

Although SYB has specified CNGRP0C on the INIT statement, the sysplex ignores
it. The first system that joins the sysplex with active CNGRPxx members
establishes console group definitions for all systems in the sysplex. Operators must
use the SET CNGRP command to change the members.

When both systems are active, all consoles receive messages from both systems.
For example, ALTMST receives master console messages and messages for
emulators and teleprocessing from SYA and SYB. ALTMST also receives selected
messages by message level (WTOR, immediate action, and critical eventual action
messages) from both systems. In addition, ALTMST has the UD attribute. The UD
attribute allows ALTMST to receive undelivered action messages, WTOR messages,
and informational messages with descriptor code 12. PRINTCON receives printer
messages from SYA and SYB.

188 z/OS V1R3.0 MVS Planning: Operations

ALTMST is in roll-deletable mode with 15 messages rolling off the screen every
second. PRINTCON is in wrap mode with messages appearing at the rate of 1/4
second.

SYB specifies MPFLST04 and MMSLST01 on the INIT statement. Because MMS,
like MPF, has system scope, the MVS message service for translating messages is
available only on SYB.

HOLDMODE(NO) and SYSLOG are default values for SYB. HOLDMODE is not in
effect for consoles attached to SYB. The console group SYNCHSYB is specified on
DEFAULT SYNCHDEST. Consoles defined in SYNCHSYB can display synchronous
messages.

Chapter 5. Examples and MVS Planning Aids for Operations 189

190 z/OS V1R3.0 MVS Planning: Operations

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 191

192 z/OS V1R3.0 MVS Planning: Operations

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 193

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help a customer plan operations for MVS. This book
primarily documents information that is NOT intended to be used as Programming
Interfaces of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AnyNet
v BookManager
v C/370
v CICS
v CT

194 z/OS V1R3.0 MVS Planning: Operations

v DB2
v DFSMS
v DFSMS/MVS
v DFSMSdfp
v DFSMSdss
v DFSMShsm
v DFSMSrmm
v eNetwork
v ESCON
v ES/3090
v ES/9000
v GDDM
v Hiperbatch
v Hiperspace
v IBM
v IBMLink
v InfoWindow
v IMS/ESA
v Language Environment
v MVS/DFP
v MVS/ESA
v MVS/SP
v MVS/XA
v NetView
v OS/2
v OS/390
v Parallel Sysplex
v Processor Resource/Systems Manager
v PR/SM
v PSF
v Resource Link
v Resource Measurement Facility
v RETAIN
v RMF
v S/390
v SAA
v SecureWay
v SOM
v SOMobjects
v Sysplex Timer
v SystemView
v System/390
v Virtual Machine/Enterprise Systems Architecture
v VisualLift
v VM/ESA
v VTAM
v z/Architecture
v z/OS
v zSeries
v 3090

UNIX is a registered trademark of The Open Group in the United States and other
countries.

NetView is a registered trademark of the International Business Machines
Corporation or Tivoli Systems Inc. in the United States, other countries, or both.

Notices 195

Other company, product or service names may be the trademarks or service marks
of others.

196 z/OS V1R3.0 MVS Planning: Operations

Glossary

This glossary defines technical terms and
abbreviations used in z/OS MVS documentation. If
you do not find the term you are looking for, refer
to the index of the appropriate manual or view
IBM Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

A
action message retention facility (AMRF). A facility
that, when active, retains all action messages except
those specified by the installation in the MPFLSTxx
member in effect.

action message sequence number. A decimal
number assigned to action messages.

Advanced Program-to-Program Communications
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a SNA network.

allocate. To assign a resource for use in performing a
specific task.

AMRF. action message retention facility

APPC. Advanced Program-to-Program
Communications

automated operations. Automated procedures to
replace or simplify actions of operators in both systems
and network operations.

AVR. Automatic volume recognition.

C
CART. Command and response token.

CNGRPxx. The Parmlib member that defines console
groups for the system or sysplex.

command and response token (CART). A parameter
on WTO, WTOR, MGCRE, and certain TSO/E
commands and REXX execs that allows you to link
commands and their associated message responses.

command prefix facility (CPF). An MVS facility that
allows you to define and control subsystem and other
command prefixes for use in a sysplex.

console. That part of a computer used for
communication between the operator or user and the
computer.

console group. In MVS, a group of consoles defined
in CNGRPxx, each of whose members can serve as an
alternate console in console or hardcopy recovery or as
a console to display synchronous messages.

CONSOLxx. The Parmlib member used to define
message handling, command processing, and MCS and
SMCS consoles.

control unit. Synonymous with device control unit.

conversational. Pertaining to a program or a system
that carries on a dialog with a terminal user, alternately
accepting input and then responding to the input quickly
enough for the user to maintain a train of thought.

CPF. Command prefix facility.

D
DASD. Direct access storage device.

data definition name. The name of a data definition
(DD) statement, which corresponds to a data control
block that contains the same name. Abbreviated as
ddname .

data definition (DD) statement. A job control
statement that describes a data set associated with a
particular job step.

data set label. (1) A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set. (2) A
general term for data set control blocks and tape data
set labels.

deallocate. To release a resource that is assigned to a
specific task.

device control unit. A hardware device that controls
the reading, writing, or displaying of data at one or more
input/output devices or terminals.

device number. The unique number assigned to an
external device.

device type. The general name for a kind of device;
for example, 3330.

direct access storage device (DASD). A device in
which the access time is effectively independent of the
location of the data.

display console. In MVS, an MCS or SMCS console
whose input/output function you can control.

DOM. An MVS macro that removes outstanding
WTORs or action messages that have been queued to
a console

© Copyright IBM Corp. 1988, 2002 197

E
end-of-tape-marker. A marker on a magnetic tape
used to indicate the end of the permissible recording
area, for example, a photo-reflective strip, a transparent
section of tape, or a particular bit pattern.

entry area. In MVS, the part of a console screen
where operators can enter commands or command
responses.

extended MCS console. In MVS, a console other
than an MCS or SMCS console from which operators or
programs can issue MVS commands and receive
messages. An extended MCS console is defined
through an OPERPARM segment.

F
full-capability console. An MCS or SMCS console
that can receive messages and send commands. See
message-stream console and status-display
console .

H
hardcopy log. In systems with multiple console
support or a graphic console, a permanent record of
system activity.

hardware. Physical equipment, as opposed to the
computer program or method of use; for example,
mechanical, magnetic, electrical, or electronic devices.
Contrast with software .

hardware configuration dialog. In MVS, a panel
program that is part of the hardware configuration
definition. The program allows an installation to define
devices for MVS system configurations.

HCD. Hardware configuration definition.

I
initial program load (IPL). The initialization procedure
that causes an operating system to begin operation.

instruction line. In MVS, the part of the console
screen that contains messages about console control
and input errors.

internal reader. A facility that transfers jobs to the job
entry subsystem (JES2 or JES3).

IPL. Initial program load.

J
JES2 multi-access spool configuration. A multiple
MVS system environment that consists of two or more
JES2 processors sharing the same job queue and spool

K
keyword. A part of a command operand or Parmlib
statement that consists of a specific character string
(such as NAME= on the CONSOLE statement of
CONSOLxx).

L
line number. A number associated with a line in a
console screen display.

M
MAS. Multi-access spool.

master console. In an MVS system or sysplex, the
main console used for communication between the
operator and the system from which all MVS commands
can be entered. The first active console with
AUTH(MASTER) defined becomes the master console
in a system or sysplex.

master console authority. In a system or sysplex, a
console defined with AUTH(MASTER) other than the
master console from which all MVS commands can be
entered.

MCS. Multiple console support.

MCS console. A non-SNA device defined to MVS that
is locally attached to an MVS system and is used to
enter commands and receive messages.

message processing facility (MPF). A facility used to
control message retention, suppression, and
presentation.

message queue. A queue of messages that are
waiting to be processed or waiting to be sent to a
terminal.

message-stream console. An MCS console which
receives messages but from which an operator cannot
enter commands. See full-capability console and
status-display console .

message text. The part of a message consisting of
the actual information that is routed to a user at a
terminal or to a program.

message window. The area of the console screen
where messages appear.

MMS. In MVS, the MVS message service.

198 z/OS V1R3.0 MVS Planning: Operations

MPF. Message processing facility.

MPFLSTxx. The Parmlib member that controls the
message processing facility for the system.

multiple console support (MCS). The operator
interface in an MVS system.

multi-access spool (MAS). A complex of multiple
processors running MVS/JES2 that share a common
JES2 spool and JES2 checkpoint data set.

multisystem console support. Multiple console
support for more than one system in a sysplex.
Multisystem console support allows consoles on
different systems in the sysplex to communicate with
each other (send messages and receive commands)

MVS message service (MMS). An MVS component
that allows an installation to display messages
translated into other languages on a console or
terminal.

N
NIP. Nucleus initialization program.

no-consoles condition. A condition in which the
system is unable to access any full-capability console
device.

nonstandard labels. Labels that do not conform to
American National Standard or IBM System/370
standard label conventions.

nucleus initialization program (NIP). The stage of
MVS that initializes the control program; it allows the
operator to request last minute changes to certain
options specified during initialization.

O
offline. Pertaining to equipment or devices not under
control of the processor.

online. Pertaining to equipment or devices under
control of the processor.

operations log. In MVS, the operations log is a
central record of communications and system problems
for each system in a sysplex.

OPERLOG. The operations log.

OPERPARM. In MVS, a segment that contains
information about console attributes for extended MCS
consoles running on TSO/E.

out-of-line display area. For status-display and
full-capability MCS and SMCS consoles, areas of the

screen set aside for formatted, multi-line display of
status information written in response to certain MVS
and subsystem commands.

P
PFK. Program function key.

PFK capability. On a display console, indicates that
program function keys are supported and were specified
at system generation.

PFKTABxx. The Parmlib member that controls the
PFK table settings for MCS consoles in a system.

printer. (1) A device that writes output data from a
system on paper or other media.

program function key (PFK). A key on the keyboard
of a display device that passes a signal to a program to
call for a particular program operation.

program status word (PSW). A doubleword in main
storage used to control the order in which instructions
are executed, and to hold and indicate the status of the
computing system in relation to a particular program.

pseudo-master console. A subsystem-allocatable
console that has system command authority like that of
an MCS master console.

PSW. Program status word.

R
remote operations. Operation of remote sites from a
host system.

roll mode. The MCS and SMCS console display mode
that allows messages to roll off the screen when a
specified time interval elapses.

roll-deletable mode. The console display mode that
allows messages to roll off the screen when a specified
time interval elapses. Action messages remain at the
top of the screen where operators can delete them.

routing. The assignment of the communications path
by which a message will reach its destination.

routing code. A code assigned to an operator
message and used to route the message to the proper
console.

S
shared DASD option. An option that enables
independently operating computing systems to jointly
use common data residing on shared direct access
storage devices.

Glossary 199

SMCS. SNA Multiple Console Support consoles are
consoles that use SecureWay Communications Server
to provide communication between operators and MVS
as opposed to MCS consoles, which do direct I/O to the
device.

software. (1) All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. (2) Contrast with hardware. A set of
programs, procedures, and, possibly, associated
documentation concerned with the operation of a data
processing system. For example, compilers, library
routines, manuals, circuit diagrams. Contrast with
hardware .

status-display console. An MCS console that can
receive displays of system status but from which an
operator cannot enter commands. See full-capability
console and message-stream console .

subsystem-allocatable console. A console managed
by a subsystem like JES3 or NetView used to
communicate with an MVS system.

synchronous messages. WTO or WTOR messages
issued by an MVS system during certain recovery
situations.

SYSLOG. The system log data set.

system log (SYSLOG). In MVS, the system log data
set that includes all entries made by the WTL
(write-to-log) macro as well as the hardcopy log.
SYSLOG is maintained by JES in JES SPOOL space.

sysplex. A multiple-MVS system environment that
allows MCS, SMCS consoles or extended MCS
consoles to receive messages and send commands
across systems.

system console. In MVS, a console attached to the
processor controller used to initialize an MVS system.

T
terminal. A device, usually equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a link.

terminal user. In systems with time-sharing, anyone
who is eligible to log on.

U
undelivered message. An action message or WTOR
that cannot be queued for delivery to the expected
console. MVS delivers these messages to any console
with the UD console attribute in a system or sysplex.

V
virtual telecommunications access method (VTAM).
A set of programs that maintain control of the
communication between terminals and application
programs running under DOS/VS, OS/VS1, and
OS/VS2 operating systems.

volume. (1) That portion of a single unit of storage
which is accessible to a single read/write mechanism,
for example, a drum, a disk pack, or part of a disk
storage module. (2) A recording medium that is mounted
and demounted as a unit, for example, a reel of
magnetic tape, a disk pack, a data cell.

volume serial number. A number in a volume label
that is assigned when a volume is prepared for use in
the system.

volume table of contents (VTOC). A table on a direct
access volume that describes each data set on the
volume.

VTAM. Virtual telecommunications access method.

VTOC. Volume table of contents.

W
wait state. Synonymous with waiting time.

waiting time. (1) The condition of a task that depends
on one or more events in order to enter the ready
condition. (2) The condition of a processing unit when
all operations are suspended.

warning line. The part of the console screen that
alerts the operator to conditions requiring possible
action.

wrap mode. The console display mode that allows a
separator line between old and new messages to move
down a full screen as new messages are added. When
the screen is filled and a new message is added, the
separator line overlays the oldest message and the
newest message appears immediately before the line.

write-to-log (WTL) message. A message sent to
SYSLOG or the hardcopy log.

write-to-operator (WTO) message. A message sent
to an operator console informing the operator of errors
and system conditions that may need correcting.

write-to-operator-with-reply (WTOR) message. A
message sent to an operator console informing the
operator of errors and system conditions that may need
correcting. The operator must enter a response.

WTL message. Write-to-log message

WTO message. Write-to-operator message

200 z/OS V1R3.0 MVS Planning: Operations

WTOR message. Write-to-operator-with-reply
message.

Glossary 201

202 z/OS V1R3.0 MVS Planning: Operations

Index

Special Characters
? (question mark)

specified on parameter of system command 112
* (asterisk)

specified on parameter of system command 112

Numerics
3277-2 display station

in console cluster 173
in message stream mode 72
PFK (program function key) display line 71

3290 information panel
as console cluster 181

9021 control unit 136
9121 control unit 136

A
accessibility 191
action message

deletion 73
display of information 117
limiting number received at a console 182
retention by action message retention facility 116

action message retention facility
See AMRF

activation
action message retention facility 117
command installation exit 122
general message processing exit IEAVMXIT 121

allocation of storage for a run-time message file 130
ALLOCxx member of parmlib concatenation 144
alternate console

setting up alternate console chain 175
alternate console group

changing a console member 46
defining 44
defining for the hardcopy output device 92
definition of an extended MCS console 46
reassigning to a console using VARY ALTGRP 46
selection of a master console 50
used in console recovery 44
used in hardcopy output device recovery 92
using CNGRPxx to define 44

ALTERNATE keyword 47
ALTGRP keyword 46
ALTGRP subkeyword of OPERPARM 7
AMRF (action message retention facility)

deactivation 117
description 116
display of an action message that is not

retained 114, 182
retrieval of an action message 117
when JES3 uses an MCS console 119

AMRF keyword 116
AOC/MVS (Automated Operations Control/MVS) 11

APPC (Advanced-Program-to-Program
Communication) 136

AUTH keyword 53
AUTH subkeyword of OPERPARM 8
AUTO subkeyword of OPERPARM 9
automatable message

directing to an extended MCS console 108
automated end of WTO messages 124
automated message

handling with descriptor code 13 106
Automated Operations Control/MVS

See AOC/MVS
automatic LOGON 60
automatic message deletion 72
automatic mode 73
automatic mode of message deletion

description 73
automatic volume recognition

See AVR
automation 11

directing an automated message to an extended
MCS console 119

reissuing an automated message 119
selecting a message 119
use of descriptor code 13 for a message 106

automation in a sysplex 120
AVR (automatic volume recognition) 144

B
boxing a device 146
broadcast message

description 106

C
cancellation

automatic message deletion 73
change

console alternate in a group without IPLing 46
MMSLSTxx member 133
MPFLSTxx member of SYS1.PARMLIB 115
time interval for dynamic display 82

CLOCKxx and the sysplex 142
CLOCKxx member of SYS1.PARMLIB 142
CMD keyword 85
CMD parameter

USEREXIT option 122
CMDDELIM keyword 88
CMDSYS keyword 109

using with commands in a sysplex 101
CMDSYS subkeyword of OPERPARM 8
CNGRP keyword 45
CNGRPxx member of SYS1.PARMLIB

activating 45
console recovery using 44
definition of an alternate console group 44

© Copyright IBM Corp. 1988, 2002 203

CNLcccxx member 133
command

flow in a sysplex 101
flow in an MVS system 97
general characteristics 95
groups 53
summary of MVS commands to change CONSOLxx

values 149
command assignment

MCS console 53
command association in a sysplex 109
command delimiter

definition 88
command flooding 98
command group 52

figure 53
command installation exit 122
command prefix

system name as synonym for ROUTE command
IEECMDPF samplib member 111

command prefix facility
See CPF

command profile in RACF 57
COMMNDxx member of SYS1.PARMLIB

using with SET CNGRP command 45
compilation of a message file for translation 130
CON keyword

in PFKTABxx 85
on the CONSOLE statement of CONSOLxx 77

CON=NONE operator prompt 138
CONFIG command

routed by MSGRT command 82
CONFIG OFFLINE command

FORCE operand 146
considerations

for using shared DASD 148
console

cluster 173
defining a subsystem-allocatable console 39
definition of an MCS console 38
display of a synchronous message 51
examples of console screens 70
extended MCS (multiple console support) 6
extending the limit for a system or sysplex 6
MCS (multiple console support) 2
message roll rate 179
NetView 11
NIP (nucleus initialization program) 138
of last resort used in recovery 47
operating mode 69
setting up alternate console chain 175
switching 54
switching attributes 48
system 136
system console as a UD console 48
with UD attribute as a console of last resort 48

console cluster
example 173
example of CONSOLxx statements used for 180

console command assignment 53

console command authority
specification of authority for a console to issue a

console control command 53
specification of authority for a console to issue a

system control command 53
specification of authority for a console to issue an I/O

control command 53
specification of authority for a console to issue an

informational command 53
specification of master authority 53

console consolidation 13
console control command 53

description 53
console display area 80
console function

control of the format of messages and status
information 82

controlling the use of an MCS console 69
defining out-of-line areas on an MCS console

screen 80
definition of the time interval for dynamic status

display 82
deleting messages manually from an MCS console

screen 77
message display on a full-capability console 72
routing status display 81
specification of message number 78
specifying automatic message deletion for an MCS

console 72
status display 79
temporary suspension of the screen roll 76
use of SEG to delete a group of messages 79
ways to define 68

console ID
considerations using 40

CONSOLE keyword
CON keyword 77

console name
advantages using 40
considerations when naming an alternate console

group 45
defining for an extended MCS console 7
defining in a sysplex 40
definition of a subsystem-allocatable console 40
definition of an MCS console 40
definition of the same console to a different

system 41
for the system console 138
restrictions 42

console operating mode
defining for consoles in console cluster 176
definition 69

console recovery
alternate console groups used for 44
considerations 43
console of last resort 47
console switching of attributes 48
defining alternate console groups by function 43
for an extended MCS console 43, 46
for an MCS console 43
in a system or sysplex 43

204 z/OS V1R3.0 MVS Planning: Operations

console recovery (continued)
no-consoles condition 50
no-master-console condition 49
RESET CN command 49
role of master console 49
specifying for the hardcopy output device 92
use of an alternate console group 43
using SYS1.PARMLIB members for 44

console security 52
using MCS 52
using RACF 54
using the command installation exit 68

CONSOLE statement 15
ALTGRP keyword 46
AREA keyword 81
AUTH keyword 53
CMDSYS keyword 109
DEL keyword 72, 78
DEVNUM keyword 38
LEVEL keyword 106
MFORM keyword 83
MONITOR keyword 84
MSCOPE keyword 108
MSGRT keyword 81
NAME keyword 38
PFKTAB keyword 86
RNUM keyword 73
ROUTCODE keyword 105
RTME keyword 73
SEG keyword 79
summary of console function 15
UD keyword 107
UNIT keyword 38
USE keyword 71
UTME keyword 82

console switching 48
as the result of the SWITCH CN command 48
for an extended MCS console 48
for an MCS console 48
using the SWITCH CN command 48
when a console fails 48

CONSOLxx member of SYS1.PARMLIB 13
console recovery using 44
CONSOLE statement 15
DEFAULT statement 16
defining an MCS console configuration 14
defining in a sysplex 20
defining problem determination mode routing for the

system console 139
DEL keyword

example 74
DEVNUM keyword

example 54
example of for a console cluster 180
example of PFK parameter 184
HARDCOPY statement 16, 88, 89
INIT statement 16
MFORM parameter

example 74
RTME parameter

example 74

CONSOLxx member of SYS1.PARMLIB (continued)
scope of keywords in a sysplex 20
specification of an alternate console group 46
summary of keywords 149
summary of MVS commands to change keyword

values 149
system use 92
UEXIT parameter

example 121
control

format of message 82
JES3 through an MCS console 119
message deletion 73
message in a console cluster 173
messages processed by MPF 114
NetView through an MCS console 11
shared DASD 146
status display 79
WTL message 128
WTO and WTOR message 123

CONTROL access authority used by RACF 56
conversational mode

definition 77
message deletion 77
PFK (program function key) 85

CPF (command prefix facility) 110
using in a sysplex 101

critical eventual action message
description 106

CSVAPF macro
defining RACF profiles for 154

CSVDYLPA macro
defining RACF profiles for 170

CSVDYNEX macro
defining RACF profiles for 158

CSVDYNL macro
defining RACF profiles for 164

D
DASD (direct access storage device)

shared 146
data definition statement 143
data set status

display 84
DD (data definition statement) 143
DEFAULT statement 16, 18

HOLDMODE keyword 76
LOGON keyword 59
RMAX keyword 123
ROUTCODE keyword 105
summary of console function 19
SYNCHDEST keyword 51

definition
command assignment to a PFK (program function

key) 181
command for PFK (program function key) 85
console configuration for a sysplex 5
console name 40
extended MCS console 6
MCS console 38

Index 205

definition (continued)
MCS console configuration 13
PFK (program function key) table 181, 184
routing code for consoles 104
routing codes for a console 175
same named console to a different system 41
single alternate console 47
where to send an undelivered action message 107

DEL keyword 72, 78
deletion

action message for which action has been taken 72
appropriate deletion specification 73
description of automatic message deletion 72
messages 72
non-action message 72

descriptor code
descriptor code 1 106
descriptor code 11 106
descriptor code 12 106
descriptor code 13 106
descriptor code 2 106
descriptor code 3 106
during message suppression 115
message presentation 115

device
allocation 143
assignment 144
boxing 146

operator considerations 146
device allocation request

operator action 144
device that MVS can use as a console 39
DEVNUM keyword 38

on the CONSOLE statement 38
on the HARDCOPY statement 38

devnum parameter of a system command 145
direct access storage device

See DASD
direction of a command from a console to another

system in a sysplex 109
direction of a command response to a specific console

example in a console cluster 179
direction of an automatable message to an extended

MCS console 108
direction of messages from other systems to a console

in a sysplex 108
disability 191
display

action messages awaiting action 117
active job 82
data set status 84
job information 84
MSGRT routing instruction 82
TSO information 84

display area
definition 71, 80
setting up for console cluster 176

DISPLAY command
PFK (program function key)

example of output 184

DISPLAY command (continued)
R parameter

examples 118
routed by MSGRT command 82

display console 39
display of a synchronous message 51
DOM subkeyword of OPERPARM 8
dynamic device allocation 143
dynamic status display

description 80

E
entry area

definition 71
example 81

error code 143
error recovery 143
ES/9000 control unit 9021

problem determination mode 139
system console attached 136

ES/9000 control unit 9121
problem determination mode 139
system console attached 136

ESCON Manager and MVS operations planning 12
eventual action message

description 106
example of defining a console configuration for a

sysplex environment 185
examples and planning aids for MVS operations

planning 149
examples of commands

CONFIG command 148
DISPLAY PFK 184
DISPLAY R 118
MSGRT command 82

extended MCS console
console attributes 6
defining console attributes 7
definition 6
direction of an automatable message 108
example of defining 152
MCSOPER macro 7
OPERPARM segment used with 7
planning 6
providing recovery for 46
RACF ADDUSER command 7
RACF ALTUSER command 7
security 7
system console 138
TSO/E CONSOLE command 7
using the automation attribute with 9
using to extend the limit for a system or sysplex 6

extended MCS consoles
increasing the 99 console limit 5
MCSOPER and OPERPARM 9

F
flagged message

removed under automatic mode 73

206 z/OS V1R3.0 MVS Planning: Operations

FORCE operand of CONFIG command
cautions about using 146

FORCE operand of VARY command
cautions about using 146

format of message
control 82

full-capability console 69
definition 69
example of console screen 70
in console cluster 173

G
general characteristics of messages and

commands 95

H
hardcopy log

considerations in a sysplex 98
definition 89
TRACK display 178

hardcopy medium
controlling 90
disabling 93

hardcopy message set
characteristics 89
controlling 90
definition 89
selection criteria

fixed 89
installation controllable 89

hardcopy output device recovery
alternate console groups used for 92

HARDCOPY statement 16, 19
definition 88
in CONSOLxx 89
summary of console function 19

Hardware Configuration Definition
See HCD

hardware console 136
hardware malfunction 145
HCD (Hardware Configuration Definition) 38
HOLDMODE keyword 76
hot I/O detection 145

operator considerations 145

I
I/O control command 53

description 53
IEA180 message 86
IEASYSxx member of SYS1.PARMLIB 87, 137

CON=NONE prompt 138
specification of CLOCKxx and IEFSSNxx

information 142
IEASYSxx member of SYSn.IPLPARM 137
IEAVMXIT installation exit 121

description 121
status when MPF is off 114

IEE041I message 79

IEE379I message 148
IEE612I message 143
IEE719I message 148
IEECMDPF samplib member

system name as synonym for ROUTE
command 111

IEEGSYS SYS1.SAMPLIB member
description 110

IEF238D message 144, 146
IEFSSNxx member of SYS1.PARMLIB 142
IMSI (initialization message suppression indicator) 137
informational command 53

description 53
informational message

description 106
handling with descriptor code 12 106
handling with descriptor code 13 106
sent to consoles with the UD attribute 48, 96

INIT statement 16
AMRF keyword 116
CMDDELIM keyword 88
CNGRP keyword 45
definition 16
LOGLIM keyword 128
MLIM keyword 123
MMS keyword 133
MONITOR keyword 85
MPF keyword 114
NOCCGRP keyword 50
PFK (program function key) keyword 86
RLIM keyword 123
summary of console function 17
UEXIT keyword 121

initialization
definition 136
from shared device 148
using LOADxx for 137

initialization of an extended MCS console session 7
initialization of the MVS system 136
input/output definition file

See IODF
installation exit routine

considerations in a sysplex 98
description of use in processing a command 122
description of use in processing a message 121

instruction line
definition 71
example 81

interaction with system function 143
IODF (input/output definition file) 137
IOS109I message 145
IOS120A message 148

J
JES2 (job entry subsystem)

automatic command facility 180
commands used in console cluster 179, 180, 182,

183
CONDEF initialization statement 110
initialization data set 180

Index 207

JES2 (job entry subsystem) (continued)
use of the command prefix facility 110

JES3 complex
control through an MCS console 119
DSP name as keyname 119

job information
display 84

K
KEY keyword

on the PFKTABxx member 85
KEY subkeyword of OPERPARM 8
keyboard 191

L
L= operand

using in a sysplex 103
using with commands 111

LEVEL keyword 106
LEVEL subkeyword of OPERPARM 8
load

process 143
LOAD command function 137
LOAD command parameter function

IMSI (initialization message suppression
indicator) 137

on system console 137
LOADxx member 136
LOADxx member of SYS1.PARMLIB 137
LOADxx member of SYSn.IPLPARM

specifying on the system console frame 137
LOGCMDRESP subkeyword of OPERPARM 8
LOGLIM keyword 128
LOGON in conjunction with a RACF profile 59

M
management of messages and commands 95
master console

cluster 173
no-consoles condition 50
no-master-console condition 49
respecification 54
role in recovery 49
routing a message 105
selecting from an alternate console group 50
sending a message 105
specification 53, 54
specification in a sysplex 54
switching assignment to another console 54

master console command 53
description 53

MCS (multiple console support console) console
configuration

definition for a sysplex 5
MCS (multiple console support) command group 53
MCS (multiple console support) console

defining 38
definition 3

MCS (multiple console support) console (continued)
definition of a console name 40
devices MVS can use 39

MCS (multiple console support) console authority 52
MCS console

extending the limit for a system or sysplex 6
MCS console cluster

definition 13
example 173

MCS console configuration 13
defining in a multisystem environment 13
use of an MCS console cluster 13
using CONSOLxx 14

MCSOPER macro 7, 49
message

control of status display 79
control of the format 82
deletion 72

description of automatic message deletion 72
descriptor code 13 106
flow in a sysplex 98
flow in an MVS system 97
general characteristics 95
processed by IEAVMXIT 121
processed by MPF 114
processed by user exit 121
reissuing an automated message 106
routing 104
selecting for automation 119
suppressed by MPF 115
synchronous 51

message and command flow
in a sysplex 98
in a system 97

message area
definition 71
example 81

message deletion specification 72
definition 73

message format
changing 82

message level
assigning to a console 106, 176
relationship with routing code 107
switching for a console 48

MESSAGE macro in JES3 118
message number

aid in manual message deletion 79
display of consecutive numbers 79
stopped by automatic message deletion 79
when not recommended 79

message presentation
specifying 115

message roll rate
specification 179
temporary suspension 76

message routing 104
message routing code 104

definition 105
for an extended MCS console 105
for messages without any defined 105

208 z/OS V1R3.0 MVS Planning: Operations

message scope
defining in a sysplex 108
switching for a console 48

message stream console
definition 70
in console cluster 173

message suppression
for automation 115

message translation 128
creating a VSAM linear data set 130
run-time message file 130
using the MVS message compiler 129

message translation service
See MMS

message-stream console
example of console screen 70

messages
commands 95
managing system commands 95
managing system messages 95

MFORM keyword 83
MFORM subkeyword of OPERPARM 8
MIGID subkeyword of OPERPARM 8
MLIM keyword 123
MMS (MVS message service) 128

installation exit used to control 132
using SYS1.PARMLIB to control 132

MMS keyword 133
on the INIT statement of CONSOLxx 133

MMSLSTxx member 132
activating 133

MONITOR keyword
on the CONSOLE statement of CONSOLxx 84
on the INIT statement of CONSOLxx 85

MONITOR subkeyword of OPERPARM 8
mount

characteristics 147
characteristics for shared DASD 147
message 85

MOUNT command 144, 145, 147
data definition statement 143

mounting a volume
operator considerations 145

MPF (message processing facility)
changing messages suppressed 114
description 114
displaying MPF options in effect 114
ending message suppression 114
messages unable to be suppressed by 115
planning for MVS 114
retention of a message 117
selecting a message for automation 119
specification of automation for a message 119
specification of command installation exit 122
specification of message presentation 115
specification of message processing exit 122
through MPFLSTxx 115
use of NetView 11

MPF keyword 114

MPFLSTxx member of SYS1.PARMLIB
CMD parameter

USEREXIT option 122
MSGCOLR statement 115, 116
msgid parameter

AUTO option 119
RETAIN option 117
SUP option 116
USEREXIT option 122

MPFLSTxx member of SYS1.PARMLIB of
SYS1.PARMLIB

changing 115
MSCOPE keyword 108
MSCOPE subkeyword of OPERPARM 8
MSGCOLR statement 115, 116
msgid parameter 119

AUTO option 119
RETAIN option 117
SUP option 116
USEREXIT option 122

MSGRT command
determination of current routing instruction 82
examples 82

MSGRT keyword 81
multiple console support 2
MVS command profile summary 62
MVS message compiler 129

invoking 131
MVS operations planning

automation 11
console function 68
examples and planning aids 149
recovery 43
remote operation 11
security 52

MVS single system
consolidation of consoles 13
use of an MCS console cluster 13

MVS system environment
defining a console configuration for 13
maximum number of MCS consoles defined for 5

MVS.MCSOPER.console-name profile in OPERCMDS
class

defining 153
MVS.UNKNOWN profile 68

N
NAME keyword 38
NetView 11

consolidating consoles using 13
use of MPF to suppress a message 11

NetView console 11
NIP console

as master console 138
definition 137

nn on the console warning line 71
no-consoles condition 50

selecting a master console from an alternate console
group 50

subsystem console 51

Index 209

no-master-console condition 49
NOCCGRP keyword 50
nonconversational mode

definition 77
message deletion 77
PFK (program function key) 85

Notices 193
number of messages waiting to be displayed 71

O
OLTEP (online test executive program) 144
online test executive program

See OLTEP
OPC/ESA (Operations Planning and Control/ESA) 11
operating environment

AOC/MVS 11
APPC (Advanced Program-to-Program

Communication) 136
considerations 2
example of console configuration 4
in a sysplex 5
multiple console support 2
NetView 11
OPC/ESA 11
remote operation 11
RMF (Resource Measurement Facility) 10
SDSF (System Display and Search Facility) 10
single system 2

operations goals
control of operating activity and function 1
increasing system availability 1
simplifying the task of the operator 1
single point of control 2
single system image 2
streamlining message flow and command

processing 1
operations log

purpose 91
Operations Planning and Control/ESA

See OPC/ESA
operator information area

definition 71
example 81

operator reply
control using RLIM and RMAX value 124

OPERLOG (operations log) 91
OPERPARM segment 7
optional LOGON 61
out-of-line display area 80
output-only console 39

definition 70

P
PFK (program function key)

defining commands for 181
definition of command 85
in conversational mode 85
summary of keys for console cluster 184

PFK (program function key) display line
definition 71

PFK (program function key) keyword
on the PFKTABxx member 85

PFK (program function key) table
definition 85
example of defining command 87

PFK keyword 86
on the INIT statement in CONSOLxx 86

PFK table
example of defining 184
example of defining for a console in a console

cluster 181
PFKTAB keyword 86
PFKTAB parameter

example 184
PFKTABxx member of SYS1.PARMLIB

CMD keyword 85
CON keyword 85
description 85
example of coding 87
example of defining for a console cluster 181
example of in a console cluster 183
KEY keyword 85
PFK (program function key) keyword 85
PFK keyword 85
TABLE keyword 85

planning
AOC/MVS 11
basic operator procedure 135
considerations for using consoles in a sysplex 20
console function 68
console recovery 43
for extended MCS console use 6
MCS console configuration 13
NetView and MVS operation 11
OPC/ESA 11
operations goals 1
remote operation 11
RMF and MVS operation 10
SDSF and MVS operation 10

printing the system log 92
problem determination mode 139

changing console attributes for the system
console 140

CONSOLxx and routing values 139
messages received on the system console when

in 140
messages received when in problem determination

mode 139
using VARY, CONTROL, or MONITOR commands

when in 140
profile

RACF (Resource Access Control Facility) 55
program status word

See PSW
PSW (program status word) 143

210 z/OS V1R3.0 MVS Planning: Operations

R
RACF (Resource Access Control Facility)

console security 54
definition of resource profile for command 57
definition of resource profile for console 59
definition of user profile for console 57
definition of user profile for operator 57
LOGON requirements using 59
summary of the MVS command profile 62
using to define an extended MCS console 152
using with CSVAPF macro 154
using with CSVDYLPA macro 170
using with CSVDYNEX macro 158
using with CSVDYNL macro 164
using with SET PROG command 154, 158, 164,

170
using with SETPROG command 154, 158, 164, 170

RACF access authority used with command profile 56
RACF ADDUSER command

used with extended MCS console 7
RACF ALTUSER command

used with extended MCS console 7
RACF profile 55

authority 56
resource 56

READ access authority used by RACF 56
recovery

boxing 146
error 143
hot I/O 145

remote operation
TSCF (Target System Control Facility) 11

removal of message from the screen 72
reply

WAIT for shared DASD 148
required LOGON 61
reserve/release 146
RESET CN command 49
resource allocation 143
Resource Measurement Facility

See RMF
respecification of the master console 54
retention of an action message 116
RLIM keyword 123
RMAX keyword 123
RMF (Resource Measurement Facility) 10
RNUM keyword 73
roll mode 73

for consoles in a console cluster 179
roll mode of message deletion

for consoles in a console cluster 182
roll-deletable mode 73

for consoles in a console cluster 179
roll-deletable mode of message deletion

defining 74
ROUTCODE keyword

on the CONSOLE statement of CONSOLxx 105
on the DEFAULT statement of CONSOLxx 105

ROUTCODE subkeyword of OPERPARM 8
ROUTE command

description 109

ROUTE command (continued)
using in a sysplex 102

routing
command 109
message 105
message by routing code 104

routing code
assigning to a console 105, 175
description 105
handling messages without 105
relationship with message level 107
switching for a console 48

RTME keyword 73
run-time message file

creating a VSAM linear data set for 130

S
scope of CONSOLxx keywords in a sysplex

examples for a console configuration 23
summary 21

scratch volume 144, 145
screen format

example 81
SDSF (System Display and Search Facility) 10
security

planning console 52
SEG keyword 79
selection of a master console from an alternate console

group 50
selector pen

defining commands for 86
deleting messages using 77

SET CNGRP command 45
SET PROG command

example of defining using RACF 154, 158, 164,
170

SETPROG command
example of defining using RACF 154, 158, 164,

170
shared DASD

operating guidelines 148
operator considerations 147
option 146

sharing system commands
in COMMNDxx 113
in multiple systems 113
overview 111
planning 112

shortcut keys 191
SMCS

consoles in a system or sysplex 5
specification

console operating mode 176
message level 106, 176
new master console 54
PFK (program function key) 181
routing code 175
shared DASD mount characteristics 147
TRACK display in console cluster 177

specification of automatic message deletion 73

Index 211

specification of color
through an installation exit 115
through MPFLSTxx 115

specification of highlighting
through an installation exit 115
through MPFLSTxx 115

specification of intensity
through an installation exit 115
through MPFLSTxx 115

specification of the master console 53
specification of the master console using

CONSOLxx 54
START command

DEALLOC procedure 147
started cataloged procedure

data definition statement 143
status display

control 79
description 79

status display console
definition 70
example of console screen 70
in console cluster 173

STORAGE subkeyword of OPERPARM 8
subsystem processing

considerations in a sysplex 98
subsystem-allocatable console 13

using names for 40
summary of CONSOLxx keywords 149
summary of MVS message and command

processing 134
suppression

job and system name for message 83
message from a console 115

suspension
message roll rate 76

SWITCH CN command 48
symbolic group name 145
SYNCHDEST keyword 51
synchronous message

considerations in a sysplex 51
console interruption 52
displaying 51
issued on a 3270-X device 39
issued on an MCS console 51
issued on the master console 51
issued on the system console 51

SYS1.PARMLIB 14
CONSOLxx member

HARDCOPY statement 89
SYSLOG (system log) 92, 93
sysplex 98

automated message 108
automation in 120
command association for a system 109
direction of a console command to another

system 109
direction of messages from other systems to a

console 108
example of CONSOLxx keyword scope for an MCS

console 23

sysplex (continued)
example of defining a console configuration 185
maximum number of MCS consoles defined for 5
no-consoles condition 49, 50
operating environment 5
scope of CONSOLxx keywords 20
specification of the master console 54
use of a console name 40
use of CONSOLxx 20
use of the extended MCS console 6
use of the MCS console 14

sysplex operating environment 5
system

activity recording 90
monitoring 143

system command group 52
system console

activating problem determination mode 139
changing console attributes when in problem

determination mode 140
defining in CONSOLxx 138
defining using DEVNUM on the CONSOLE

statement 39
definition 136
example of console in problem determination

mode 140
example of in an MCS console configuration 4
in an MVS console configuration 4
in problem determination mode 139
LOAD command parameter function 137
messages received during normal operations 139
messages received during problem determination

mode 140
naming 138
naming restrictions 138
using CONSOLxx to define problem determination

mode routing values 139
using VARY, CONTROL, or MONITOR commands for

problem determination mode 140
system control command 53

description 53
System Display and Search Facility

See SDSF
system group name

setting up for ROUTE command use 110
system log

purpose 92
system name

synonym for ROUTE command 111
system symbols

using in commands 112

T
TABLE keyword

on the PFKTABxx member 85
tape

blank 145
labeled 145
unlabeled 145

tapemark 145

212 z/OS V1R3.0 MVS Planning: Operations

Target System Control Facility
See TSCF

temporary suspension of the screen roll using
HOLDMODE 76

time interval for dynamic display
changing 82

time stamp
adding to message 84

TRACK command
routed by MSGRT command 82
setting up TRACK display 177

translation
handling messages 128

treatment of message for translation 128
TSCF (Target System Control Facility) 12
TSO SUBMIT command 143
TSO/E (time sharing option/extended)

display of information 84
TSO/E CONSOLE command

initialization of an extended MCS console session
using 7

TSO/E LOGON command
data definition statement 143

U
UD keyword

on the CONSOLE statement 107
UD subkeyword of OPERPARM 8
UEXIT keyword

on the INIT statement of CONSOLxx 121
undelivered action message

sent to consoles with the UD attribute 48
where to send 107

undelivered WTOR message
sent to consoles with the UD attribute 48

UNIT keyword 38
unlabeled tape 145
UPDATE access authority used by RACF 56
use

console cluster 173
X option of MFORM 83

USE attribute of VATLSTxx 144
USE keyword 71
use of location operand to route status display 82
UTME keyword 82

V
VARY ALTGRP command 46
VARY CN command

examples 54
VARY CN,ACTIVATE command 139
VARY CN,DEACTIVATE command 139
VARY CN(*),ACTIVATE 139
VARY CN(*),DEACTIVATE 139
VARY command 146, 147, 148
VARY HARDCPY command

using to modify hardcopy message set 89
VATLSTxx member

at IPL time 144

VATLSTxx member (continued)
controlling mounting of volumes 144
when the VARY command is issued 144

volume
characteristics 147
mounting 144, 147

W
wait state

restartable 145
warning line

definition 71
example 81
nn 71

wildcards
using in commands 112

wrap mode 74
WRITELOG command

to force printing of SYSLOG 92
WTL message

specifying buffers through CONSOLxx 128
WTO message

controlled by user exit IEAVMXIT 121
specifying buffers through CONSOLxx 123

WTO messages
controlling automated end 124

WTOR message
controlled by user exit IEAVMXIT 121
description 121
specifying buffers through CONSOLxx 123

Index 213

214 z/OS V1R3.0 MVS Planning: Operations

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Planning: Operations

Publication No. SA22-7601-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7601-02

SA22-7601-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7601-02

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How To Use This Book
	Where to Find More Information
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Do You Have Problems, Comments, or Suggestions?

	Summary of changes
	Chapter 1. Planning Your MVS Operations
	Operations Goals
	The Operating Environment
	Multiple Console Support and the MVS Environment
	Sysplex Operating Environment
	Using MCS and SMCS Consoles in a System or Sysplex
	Extended MCS Consoles
	Using Extended MCS Consoles
	Extended MCS Consoles and Console Attributes
	Defining and Protecting Extended MCS Consoles
	Defining Console Attributes for Extended MCS Consoles
	MCSOPER and OPERPARM

	SDSF and MVS Operations Planning
	RMF and MVS Operations Planning
	Automated Operations and z/OS Operations Planning
	NetView
	Automated Operations Control/MVS
	Operations Planning and Control/ESA

	Remote Operations and MVS Operations Planning
	ESCON and Operations Planning

	Chapter 2. Defining Your Console Configuration
	Choosing How to Define Your Console Configuration
	Shared Consoles in Mixed Sysplexes

	Using CONSOLxx
	CONSOLE Statement
	INIT, DEFAULT, and HARDCOPY Statements
	CONSOLxx and the Sysplex
	Sharing a Single CONSOLxx Member for All Systems
	Using Unique CONSOLxx Members for Each System
	Defining All Consoles in the CONSOLxx Member of the First System to Join the Sysplex

	SMCS Console Considerations
	Installing SMCS
	Defining SMCS to VTAM
	Updating CONSOLxx
	Starting the SMCS Application
	Defining SMCS Consoles
	Providing Security for SMCS Consoles
	Activating an SMCS Console
	Deactivating an SMCS Console

	Removing Console Definitions from a Configuration
	Sample Invocation of IEARELCN
	Environment
	Return and Reason Codes

	Defining Devices as MCS or SMCS Consoles
	Devices MVS Can Use as MCS Consoles
	Using Console Names
	Using Console Names in a Sysplex
	Restrictions for Console Names

	Attaching Consoles to Particular Systems in a Sysplex
	Planning Console Recovery
	Recovery Considerations
	Parmlib Members and Console Recovery
	Alternate Console Groups and Console Backup
	Using CNGRPxx to Define Alternate Console Groups
	Activating CNGRPxx
	Alternate Console Groups and CONSOLxx
	Changing the Specification of Alternate Console Groups
	Changing Console Alternates without Re-IPLing
	Alternate Console Groups and Extended MCS Consoles
	Using the ALTERNATE Keyword on the CONSOLE Statement
	Alternate Console of Last Resort
	Console Switching and Console Recovery
	The SWITCH CN Command
	Console Recovery and the RESET CN Command
	Role of the Master Console During Console Recovery
	No-Master-Console Condition
	No-Consoles Condition
	Selecting a Master Console Using Alternate Console Groups
	Display of Synchronous Messages
	Considerations Using Consoles to Display Synchronous Messages

	Planning Console Security
	Controlling Command Authority with the AUTH Attribute
	Assigning a Console Master Authority
	Using RACF to Control Command Authority and Operator Logon
	Using RACF to Authorize Console Operators and Command Use

	Defining RACF Profiles
	RACF Access Authorities
	Defining Users with RACF
	Defining TSO/E Users of Extended MCS Consoles with RACF
	Defining Commands with RACF
	Defining Consoles with RACF
	Setting DEFAULT LOGON Requirements for MCS and SMCS Consoles
	Setting LOGON Requirements for Individual MCS or SMCS Consoles
	Automatic LOGON
	Required LOGON
	Optional LOGON

	MVS Commands, RACF Access Authorities, and Resource Names
	Other Ways to Control Command Authority for Consoles

	Planning Console Functions for Operators
	How to Control the Use of an MCS Console
	Examples of MCS Console Screens

	Defining the USE Attribute
	Message Display and the Full-Capability Console Screen
	Specifying Automatic Message Deletion for MCS or SMCS Consoles
	Temporarily Suspending the Screen Roll
	Comparison of Roll, Roll-Deletable, Wrap Modes, and HOLDMODE
	Manual Deletion of Messages
	How Operators Specify Message Numbering
	Using SEG to Delete Groups of Messages from the Screen
	Status Displays and MCS and SMCS Consoles
	Setting Up Out-of-Line Display Areas on a Console
	Where to Route Status Displays
	Defining the Time Interval for Updating a Dynamic Status Display
	Controlling the Format of Messages and Status Information on Console Screens
	Displaying Jobname, Data Set Status, and TSO/E Information
	Adding Information to Mount Messages

	Defining PFKs and Other Command Controls for Consoles
	Setting up PFKs for Consoles
	An Example of Defining a PFK Table

	Defining the Command Delimiter for Full-Capability Consoles

	Hardcopy Processing
	The Hardcopy Message Set
	Characteristics of the Hardcopy Message Set
	Defining the Hardcopy Message Set
	Printing the Hardcopy Message Set

	The Hardcopy Medium
	Hardcopy Processing
	Format of Hardcopy Records
	Using OPERLOG
	Using SYSLOG
	Specifying an Alternate Console Group for Hardcopy Recovery
	Log Switching and JES2 Restart
	Temporarily Disabling the Hardcopy Medium

	Chapter 3. Managing Messages and Commands
	General Characteristics of Messages and Commands
	Message and Command Routing
	Message Flow in a System
	Command Flow in a System
	Command Flooding

	Message and Command Flow in a Sysplex
	Messages in a Sysplex
	Message Recovery Following System Failures
	Commands in a Sysplex
	Command Flow, CMDSYS and CPF in a Sysplex
	Command Flow and the ROUTE Command in a Sysplex
	Command Flow and the L= Operand in a Sysplex

	Routing Messages
	Defining Routing Codes
	Handling Messages without Routing Codes
	Defining Message Levels for a Console
	Specifying Message Levels and Routing Codes for a Console

	Defining the UD Attribute for Consoles
	Directing Messages from Other Systems to a Console in a Sysplex
	Replying to Messages from Other Systems in a Sysplex
	Directing Messages that Are Eligible for Automation to Extended MCS Consoles

	Routing Commands
	Using CMDSYS on the CONSOLE Statement
	Using the ROUTE command
	Using the Command Prefix Facility
	Defining a System Name as a Command Prefix

	Using the L=Operand on Certain Commands
	Sharing System Commands By Using System Symbols
	What Are System Symbols?
	What Are Wildcards?
	Planning to Share System Commands

	MPF and MVS Operations Planning
	Specifying MPFLSTxx members
	MPF Options

	Specifying Message Presentation
	Suppressing Messages
	Retaining Messages
	Action Message Retention Facility
	Using MPF to Retain Messages
	Displaying Information About Messages Awaiting Action

	Selecting Messages for Automation
	Automation in a Sysplex
	Installation Exits for Messages and Commands
	IEAVMXIT and Message Processing
	Message Processing Exits other than IEAVMXIT
	Command Installation Exits

	Controlling WTO and WTOR Message Buffers
	Controlling Reply IDs for WTOR Messages
	RLIM and RMAX Values
	Reply IDs and RMAX

	Controlling Automatic Ending of Multi-line WTO Messages
	Aggregating Messages Returned to the ROUTE Command
	Appearance of Aggregated Messages

	Controlling Write-to-Log (WTL) Message Buffers
	Handling Translated Messages
	Steps for Providing Translated Messages
	Allocating Storage for a Run-Time Message File
	Compiling Message Files
	Controlling MMS through Installation Exits
	Using Parmlib to Control Message Translation
	Using the INIT Statement on CONSOLxx
	Activating MMS

	Summary of MVS Message and Command Processing Services

	Chapter 4. Planning for Basic Operation Procedures
	Initializing the System
	The System Console and Message Processing
	Using the System Console
	Specifying LOAD Information
	The NIP Console
	The System Console and CONSOLxx
	Naming the System Console
	The System Console During Normal Operations

	Problem Determination and the System Console
	The System Console in Problem Determination Mode
	Establishing Console Attributes for Problem Determination Mode in CONSOLxx
	Changing Console Attributes through Commands
	Messages that the System Console Receives in Problem Determination Mode
	Example of Controlling Problem Determination Mode for the System Console

	Specifying the Time-of-Day Clock and the JES Subsystem
	CLOCKxx and the Sysplex
	Handling Wait States
	Initializing the Master Console

	Interacting with System Functions
	Device Allocation
	Considerations for Operators

	Hot I/O Detection
	Considerations for Operators

	Device Boxing
	Considerations for Operators

	Controlling Shared DASD
	Specifying Shared DASD Mount Characteristics
	Considerations for Operators
	IPLing a System that Shares DASD

	Chapter 5. Examples and MVS Planning Aids for Operations
	Summary of CONSOLxx and Commands to Change Values
	Controlling Extended MCS Consoles Using RACF
	Defining the User Profile of an Extended MCS Console
	Granting the User Access to the RACF OPERCMDS class
	Allowing a TSO/E User to Issue the CONSOLE Command
	Changing Console Attributes Using RACF

	Using RACF to Control APF Lists
	Command Authorization
	Defining Command Profiles
	Controlling How to Add or Delete APF List Entries for a Library
	Controlling How to Change the APF List Format

	Using RACF to Control Dynamic Exits
	Command Authorization
	Defining Command Profiles
	Controlling Defining a Dynamic Exit
	Controlling Adding, Modifying or Deleting Exit Routines
	Controlling How to Undefine a Dynamic Exit
	Controlling How to Obtain a List of the Dynamic Exits
	Controlling Calling of a Dynamic Exit's Routines
	Controlling Recovering of Dynamic Exit Processing

	Using RACF to Control LNKLST Concatenations
	Command Authorization
	Defining Command Profiles
	Controlling Defining a LNKLST Set
	Controlling Adding a Data Set to a LNKLST Set
	Controlling Deleting a Data Set from a LNKLST Set
	Controlling Removing the Definition of a LNKLST Set
	Controlling Testing of a LNKLST Set
	Controlling Updating of a Job's LNKLST Set
	Controlling Activation of a LNKLST Set

	Using RACF to Control Dynamic LPA
	Command Authorization
	Defining Command Profiles
	Controlling Adding A Module to LPA after IPL
	Controlling Deleting A Module from LPA after IPL

	Managing Messages with a Console Cluster
	Setting Up and Using a Master Console Cluster
	Setting Up Console Recovery for the Consoles
	Defining Routing Codes for the Consoles
	Defining the Operating Modes and the Message Levels for the Consoles
	Setting Up Display Areas
	Setting Up a TRACK Display
	Setting Message Roll Rates and Message Deletion Specifications for the Consoles
	Setting Up a Periodic Display of Outstanding Requests
	Summary of Contents of CONSOLxx for the Cluster
	Defining PFKs for the Master Console
	Summary of the PFK Definitions for the Cluster
	Activating the PFK Table
	Using the Master Console Cluster and Setting It Up Again
	The 3290 as a Console Cluster

	Defining a Console Configuration for a Sysplex Environment
	Planning Your Console Configuration for Each System
	Console Recovery for the Sysplex

	Defining CONSOLxx for Each System

	Appendix. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

